ﻻ يوجد ملخص باللغة العربية
I show how Bose-Einstein condensation (BEC) in a non interacting bosonic system with exponential density of states function yields to a new class of Lerch zeta functions. By looking on the critical temperature, I suggest that a possible strategy to prove the Riemann hypothesis problem. In a theorem and a lemma I suggested that the classical limit $hbarto 0$ of BEC can be used as a tool to find zeros of real part of the Riemann zeta function with complex argument. It reduces the Riemann hypothesis to a softer form. Furthermore I propose a pair of creation-annihilation operators for BEC phenomena. This set of creation-annihilation operators is defined on a complex Hilbert space. They build a set up to interpret this type of BEC as a creation-annihilation phenomenon for a virtual hypothetical particle.
Bose-Einstein condensation, the macroscopic occupation of a single quantum state, appears in equilibrium quantum statistical mechanics and persists also in the hydrodynamic regime close to equilibrium. Here we show that even when a degenerate Bose ga
We introduce an irreversible discrete multiplicative process that undergoes Bose-Einstein condensation as a generic model of competition. New players with different abilities successively join the game and compete for limited resources. A players fut
The wave function of a dilute hard sphere Bose gas at low temperatures is discussed, emphasizing the formation of pairs. The pair distribution function is calculated for two values of $sqrt{rho a^3}$.
Extending a previous study of the velocity autocorrelation function (VAF) in a simulated Lennard-Jones fluid to cover higher-density and lower-temperature states, we show that the recently demonstrated multiexponential expansion allows for a full acc
The asymptotic (non)equivalence of canonical and microcanonical ensembles, describing systems with soft and hard constraints respectively, is a central concept in statistical physics. Traditionally, the breakdown of ensemble equivalence (EE) has been