ﻻ يوجد ملخص باللغة العربية
Filtering images of more than one channel is challenging in terms of both efficiency and effectiveness. By grouping similar patches to utilize the self-similarity and sparse linear approximation of natural images, recent nonlocal and transform-domain methods have been widely used in color and multispectral image (MSI) denoising. Many related methods focus on the modeling of group level correlation to enhance sparsity, which often resorts to a recursive strategy with a large number of similar patches. The importance of the patch level representation is understated. In this paper, we mainly investigate the influence and potential of representation at patch level by considering a general formulation with block diagonal matrix. We further show that by training a proper global patch basis, along with a local principal component analysis transform in the grouping dimension, a simple transform-threshold-inverse method could produce very competitive results. Fast implementation is also developed to reduce computational complexity. Extensive experiments on both simulated and real datasets demonstrate its robustness, effectiveness and efficiency.
Filtering real-world color images is challenging due to the complexity of noise that can not be formulated as a certain distribution. However, the rapid development of camera lens pos- es greater demands on image denoising in terms of both efficiency
Modern digital cameras rely on the sequential execution of separate image processing steps to produce realistic images. The first two steps are usually related to denoising and demosaicking where the former aims to reduce noise from the sensor and th
Compared to color images captured by conventional RGB cameras, monochrome images usually have better signal-to-noise ratio (SNR) and richer textures due to its higher quantum efficiency. It is thus natural to apply a mono-color dual-camera system to
Nonlocal image representation or group sparsity has attracted considerable interest in various low-level vision tasks and has led to several state-of-the-art image denoising techniques, such as BM3D, LSSC. In the past, convex optimization with sparsi
In this paper, we present a fast exemplar-based image colorization approach using color embeddings named Color2Embed. Generally, due to the difficulty of obtaining input and ground truth image pairs, it is hard to train a exemplar-based colorization