ﻻ يوجد ملخص باللغة العربية
We demonstrate full quantum state control of two species of single atoms using optical tweezers and assemble the atoms into a molecule. Our demonstration includes 3D ground-state cooling of a single atom (Cs) in an optical tweezer, transport by several microns with minimal heating, and merging with a single Na atom. Subsequently, both atoms occupy the simultaneous motional ground state with 61(4)% probability. This realizes a sample of exactly two co-trapped atoms near the phase-space-density limit of one, and allows for efficient stimulated-Raman transfer of a pair of atoms into a molecular bound state of the triplet electronic ground potential $a^3Sigma^+$. The results are key steps toward coherent creation of single ultracold molecules, for future exploration of quantum simulation and quantum information processing.
Chemical reactions can be surprisingly efficient at ultracold temperatures ( < 1mK) due to the wave nature of atoms and molecules. The study of reactions in the ultracold regime is a new research frontier enabled by cooling and trapping techniques de
We demonstrate the coherent creation of a single NaCs molecule in its rotational, vibrational, and electronic (rovibronic) ground state in an optical tweezer. Starting with a weakly bound Feshbach molecule, we locate a two-photon transition via the $
We employ two-photon spectroscopy to study the vibrational states of the triplet ground state potential ($a^3Sigma^+$) of the $^{23}$Na$^{6}$Li molecule. Pairs of Na and Li atoms in an ultracold mixture are photoassociated into an excited triplet mol
We report Raman sideband cooling of a single sodium atom to its three-dimensional motional ground state in an optical tweezer. Despite a large Lamb-Dicke parameter, high initial temperature, and large differential light shifts between the excited sta
We report the measurement of collision rate coefficient for collisions between ultracold Cs atoms and low energy Cs+ ions. The experiments are performed in a hybrid trap consisting of a magneto-optical trap (MOT) for Cs atoms and a Paul trap for Cs+