ترغب بنشر مسار تعليمي؟ اضغط هنا

Molecular assembly of ground state cooled single atoms

330   0   0.0 ( 0 )
 نشر من قبل Lee R Liu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate full quantum state control of two species of single atoms using optical tweezers and assemble the atoms into a molecule. Our demonstration includes 3D ground-state cooling of a single atom (Cs) in an optical tweezer, transport by several microns with minimal heating, and merging with a single Na atom. Subsequently, both atoms occupy the simultaneous motional ground state with 61(4)% probability. This realizes a sample of exactly two co-trapped atoms near the phase-space-density limit of one, and allows for efficient stimulated-Raman transfer of a pair of atoms into a molecular bound state of the triplet electronic ground potential $a^3Sigma^+$. The results are key steps toward coherent creation of single ultracold molecules, for future exploration of quantum simulation and quantum information processing.



قيم البحث

اقرأ أيضاً

Chemical reactions can be surprisingly efficient at ultracold temperatures ( < 1mK) due to the wave nature of atoms and molecules. The study of reactions in the ultracold regime is a new research frontier enabled by cooling and trapping techniques de veloped in atomic and molecular physics. In addition, ultracold molecular gases that offer diverse molecular internal states and large electric dipolar interactions are sought after for studies of strongly interacting many-body quantum physics. Here we propose a new approach for producing ultracold molecules in the absolute internal and motional quantum ground state, where single molecules are assembled one by one from individual atoms. The scheme involves laser cooling, optical trapping, Raman sideband cooling, and coherent molecular state transfer. As a crucial initial step, we demonstrate quantum control of constituent atoms, including 3D ground-state cooling of a single Cs atom, in a simple apparatus. As laser technology advances to shorter wavelengths, additional atoms will be amenable to laser-cooling, allowing more diverse, and eventually more complex, molecules to be assembled with full quantum control.
We demonstrate the coherent creation of a single NaCs molecule in its rotational, vibrational, and electronic (rovibronic) ground state in an optical tweezer. Starting with a weakly bound Feshbach molecule, we locate a two-photon transition via the $ |{c^3Sigma,v=26}rangle$ excited state and drive coherent Rabi oscillations between the Feshbach state and a single hyperfine level of the NaCs rovibronic ground state $|{X^1Sigma,v=0,N=0}rangle$ with a binding energy of $D_0 = h times 147038.30(2)$ GHz. We measure a lifetime of $3.4pm1.6$ s for the rovibronic ground-state molecule, which possesses a large molecule-frame dipole moment of 4.6 Debye and occupies predominantly the motional ground state. These long-lived, fully quantum-state-controlled individual dipolar molecules provide a key resource for molecule-based quantum simulation and information processing.
We employ two-photon spectroscopy to study the vibrational states of the triplet ground state potential ($a^3Sigma^+$) of the $^{23}$Na$^{6}$Li molecule. Pairs of Na and Li atoms in an ultracold mixture are photoassociated into an excited triplet mol ecular state, which in turn is coupled to vibrational states of the triplet ground potential. Vibrational state binding energies, line strengths, and potential fitting parameters for the triplet ground $a^3Sigma^+$ potential are reported. We also observe rotational splitting in the lowest vibrational state.
We report Raman sideband cooling of a single sodium atom to its three-dimensional motional ground state in an optical tweezer. Despite a large Lamb-Dicke parameter, high initial temperature, and large differential light shifts between the excited sta te and the ground state, we achieve a ground state population of $93.5(7)$% after $53$ ms of cooling. Our technique includes addressing high-order sidebands, where several motional quanta are removed by a single laser pulse, and fast modulation of the optical tweezer intensity. We demonstrate that Raman sideband cooling to the 3D motional ground state is possible, even without tight confinement and low initial temperature.
We report the measurement of collision rate coefficient for collisions between ultracold Cs atoms and low energy Cs+ ions. The experiments are performed in a hybrid trap consisting of a magneto-optical trap (MOT) for Cs atoms and a Paul trap for Cs+ ions. The ion-atom collisions impart kinetic energy to the ultracold Cs atoms resulting in their escape from the shallow MOT and, therefore, in a reduction in the number of Cs atoms in the MOT. By monitoring, using fluorescence measurements, the Cs atom number and the MOT loading dynamics and then fitting the data to a rate equation model, the ion-atom collision rate is derived. The Cs-Cs+ collision rate coefficient $9.3(pm0.4)(pm1.2)(pm3.5) times 10^{-14}$ m$^{3}$s$^{-1}$, measured for an ion distribution with most probable collision energy of 95 meV ($approx k_{B}.1100$ K), is in fair agreement with theoretical calculations. As an intermediate step, we also determine the photoionization cross section of Cs $6P_{3/2}$ atoms at 473 nm wavelength to be $2.28 (pm 0.33) times 10^{-21}$ m$^{2}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا