ﻻ يوجد ملخص باللغة العربية
The notion of 2--monoidal category used here was introduced by B.~Vallette in 2007 for applications in the operadic context. The starting point for this article was a remark by Yu. Manin that in the category of quadratic algebras (that is, quantum linear spaces) one can also define 2--monoidal structure(s) with rather unusual properties. Here we give a detailed exposition of these constructions, together with their generalisations to the case of quadratic operads. Their parallel exposition was motivated by the following remark. Several important operads/cooperads such as genus zero quantum cohomology operad, the operad classifying Gerstenhaber algebras, and more generally, (co)operads of homology/cohomology of some topological operads, start with collections of quadratic algebras/coalgebras rather than simply linear spaces. Suggested here enrichments of the categories to which components of these operads belong, as well of the operadic structures themselves, might lead to the better understanding of these fundamental objects. New version includes minor editorial changes and new references.
The category of Hilbert modules may be interpreted as a naive quantum field theory over a base space. Open subsets of the base space are recovered as idempotent subunits, which form a meet-semilattice in any firm braided monoidal category. There is a
Frobenius monoidal functors preserve duals. We show that conversely, (co)monoidal functors between autonomous categories which preserve duals are Frobenius monoidal. We apply this result to linearly distributive functors between autonomous categories.
We introduce homotopical methods based on rewriting on higher-dimensional categories to prove coherence results in categories with an algebraic structure. We express the coherence problem for (symmetric) monoidal categories as an asphericity problem
We introduce DisCoPy, an open source toolbox for computing with monoidal categories. The library provides an intuitive syntax for defining string diagrams and monoidal functors. Its modularity allows the efficient implementation of computational expe
This work is the first one in a series, in which we develop a mathematical theory of enriched (braided) monoidal categories and their representations. In this work, we introduce the notion of the $E_0$-center ($E_1$-center or $E_2$-center) of an enri