ترغب بنشر مسار تعليمي؟ اضغط هنا

Transition from confined to bulk dynamics in symmetric star-linear polymer mixtures

200   0   0.0 ( 0 )
 نشر من قبل Domenico Truzzolillo
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the linear viscoelastic properties of mixtures comprising multiarm star (as model soft colloids) and long linear chain homopolymers in a good solvent. In contrast to earlier works, we investigated symmetric mixtures (with a size ratio of 1) and showed that the polymeric and colloidal responses can be decoupled. The adopted experimental protocol involved probing the linear chain dynamics in different star environments. To this end, we studied mixtures with different star mass fraction, which was kept constant while linear chains were added and their entanglement plateau modulus ($G_p$) and terminal relaxation time ($tau_d$) were measured as functions of their concentration. Two distinct scaling regimes were observed for both $G_p$ and $tau_d$: at low linear polymer concentrations, a weak concentration dependence was observed, that became even weaker as the fraction of stars in the mixtures increased into the star glassy regime. On the other hand, at higher linear polymer concentrations, the classical entangled polymer scaling was recovered. Simple scaling arguments show that the threshold crossover concentration between the two regimes corresponds to the maximum osmotic star compression and signals the transition from confined to bulk dynamics. These results provide the needed ingredients to complete the state diagram of soft colloid-polymer mixtures and investigate their dynamics at large polymer-colloid size ratios. They also offer an alternative way to explore aspects of the colloidal glass transition and the polymer dynamics in confinement. Finally, they provide a new avenue to tailor the rheology of soft composites.



قيم البحث

اقرأ أيضاً

Monte Carlo simulations of the Asakura-Oosawa (AO) model for colloid-polymer mixtures confined between two parallel repulsive structureless walls are presented and analyzed in the light of current theories on capillary condensation and interface loca lization transitions. Choosing a polymer to colloid size ratio of q=0.8 and studying ultrathin films in the range of D=3 to D=10 colloid diameters thickness, grand canonical Monte Carlo methods are used; phase transitions are analyzed via finite size scaling, as in previous work on bulk systems and under confinement between identical types of walls. Unlike the latter work, inequivalent walls are used here: while the left wall has a hard-core repulsion for both polymers and colloids, at the right wall an additional square-well repulsion of variable strength acting only on the colloids is present. We study how the phase separation into colloid-rich and colloid-poor phases occurring already in the bulk is modified by such a confinement. When the asymmetry of the wall-colloid interaction increases, the character of the transition smoothly changes from capillary condensation-type to interface localization-type. The critical behavior of these transitions is discussed, as well as the colloid and polymer density profiles across the film in the various phases, and the correlation of interfacial fluctuations in the direction parallel to the confining walls. The experimental observability of these phenomena also is briefly discussed.
We investigated the viscoelastic properties of colloid-polymer mixtures at intermediate colloid volume fraction and varying polymer concentrations, thereby tuning the attractive interactions. Within the examined range of polymer concentrations, the s amples ranged from fluids to gels. Already in the liquid phase the viscoelastic properties significantly changed when approaching the gelation boundary, indicating the formation of clusters and transient networks. This is supported by an increasing correlation length of the density fluctuations, observed by static light scattering and microscopy. At the same time, the correlation function determined by dynamic light scattering completely decays, indicating the absence of dynamical arrest. Upon increasing the polymer concentration beyond the gelation boundary, the rheological properties changed qualitatively again, now they are consistent with the formation of colloidal gels. Our experimental results, namely the location of the gelation boundary as well as the elastic (storage) and viscous (loss) moduli, are compared to different theoretical models. These include consideration of the escape time as well as predictions for the viscoelastic moduli based on scaling relations and Mode Coupling Theories (MCT).
380 - L. Yelash , P. Virnau , K. Binder 2010
Employing Molecular Dynamics simulations of a chemically realistic model of 1,4-polybutadiene between graphite walls we show that the mass exchange between layers close to the walls is a slow process already in the melt state. For the glass transitio n of confined polymers this process competes with the slowing down due to packing effects and intramolecular rotation barriers.
Using molecular dynamics simulations we study the static and dynamic properties of spherical nanoparticles (NPs) embedded in a disordered and polydisperse polymer network. Purely repulsive (RNP) as well as weakly attractive (ANP) polymer-NP interacti ons are considered. It is found that for both types of particles the NP dynamics at intermediate and at long times is controlled by the confinement parameter $C=sigma_N/lambda$, where $sigma_N$ is the NP diameter and $lambda$ is the dynamic localization length of the crosslinks. Three dynamical regimes are identified: i) For weak confinement ($C lesssim 1$) the NPs can freely diffuse through the mesh; ii) For strong confinement ($C gtrsim 1$) NPs proceed by means of activated hopping; iii) For extreme confinement ($C gtrsim 3$) the mean squared displacement shows on intermediate time scales a quasi-plateau since the NPs are trapped by the mesh for very long times. Escaping from this local cage is a process that depends strongly on the local environment, thus giving rise to an extremely heterogeneous relaxation dynamics. The simulation data are compared with the two main theories for the diffusion process of NPs in gels. Both theories give a very good description of the $C-$dependence of the NP diffusion constant, but fail to reproduce the heterogeneous dynamics at intermediate time scales.
Surface segregation of the low-molecular weight component in a polymeric mixture leads to degradation of industrial formulations. We report a simultaneous phase separation and surface migration phenomena in oligomer-polymer and oligomer-gel systems f ollowing a temperature quench. We compute equilibrium and time varying migrant density profiles and wetting layer thickness using coarse grained molecular dynamics and mesoscale hydrodynamics simulations to demonstrate that surface migration in oligomer-gel systems is significantly reduced due to network elasticity. Further, phase separation processes are significantly slowed in gels, modifying the Lifshitz-Slyozov-Wagner (LSW) law $ell(tau) sim tau^{1/3}$. Our work allows for rational design of polymer/gel-oligomer mixtures with predictable surface segregation characteristics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا