ﻻ يوجد ملخص باللغة العربية
We consider a black hole (BH) density cusp in a nuclear star cluster (NSC) hosting a supermassive back hole (SMBH) at its center. Assuming the stars and BHs inside the SMBH sphere of influence are mass-segregated, we calculate the number of BHs that sink into this region under the influence of dynamical friction. We find that the total number of BHs increases significantly in this region due to this process for lower mass SMBHs by up to a factor of 5, but there is no increase in the vicinity of the highest mass SMBHs. Due to the high BH number density in the NSC, BH-BH binaries form during close approaches due to GW emission. We update the previous estimate of OLeary et al. for the rate of such GW capture events by estimating the $langle n^2rangle/langle nrangle^2$ parameter where $n$ is the number density. We find a BH merger rate for this channel to be in the range $sim0.01-0.1 , mathrm{Gpc^{-3}yr^{-1}}$. The total merger rate is dominated by the smallest galaxies hosting SMBHs, and the number of heaviest BHs in the NSC. It is also exponentially sensitive to the radial number density profile exponent, reaching $>100 , mathrm{Gpc^{-3}yr^{-1}}$ when the BH mass function is $m^{-2.3}$ or shallower and the heaviest BH radial number density is close to $r^{-3}$. Even if the rate is much lower than the range constrained by the current LIGO detections, the GW captures around SMBHs can be distinguished by their high eccentricity in the LIGO band.
Accretion disks of active galactic nuclei (AGN) have been proposed as promising sites for producing both (stellar-mass) compact object mergers and extreme mass ratio inspirals. Along with the disk-assisted migration/evolution process, ambient gas mat
Among the four black hole binary merger events detected by LIGO, six progenitor black holes have masses greater than 20,$M_odot$. The existence of such massive BHs calls for extreme metal-poor stars as the progenitors. An alternative possibility that
Massive black holes in galactic nuclei vary their mass M and spin vector J due to accretion. In this study we relax, for the first time, the assumption that accretion can be either chaotic, i.e. when the accretion episodes are randomly and isotropica
Black hole spin will have a large impact on searches for gravitational waves with advanced detectors. While only a few stellar mass black hole spins have been measured using X-ray techniques, gravitational wave detectors have the capacity to greatly
We show how the observable number of binaries in LISA is affected by eccentricity through its influence on the peak gravitational wave frequency, enhanced binary number density required to produce the LIGO observed rate, and the reduced signal-to-noi