ﻻ يوجد ملخص باللغة العربية
We report the first experimental results on spin-dependent elastic weakly interacting massive particle (WIMP) nucleon scattering from the XENON1T dark matter search experiment. The analysis uses the full ton year exposure of XENON1T to constrain the spin-dependent proton-only and neutron-only cases. No significant signal excess is observed, and a profile likelihood ratio analysis is used to set exclusion limits on the WIMP-nucleon interactions. This includes the most stringent constraint to date on the WIMP-neutron cross section, with a minimum of $6.3times10^{-42}$ cm$^2$ at 30 GeV/c${}^2$ and 90% confidence level. The results are compared with those from collider searches and used to exclude new parameter space in an isoscalar theory with an axial-vector mediator.
We present new experimental constraints on the elastic, spin-dependent WIMP-nucleon cross section using recent data from the XENON100 experiment, operated in the Laboratori Nazionali del Gran Sasso in Italy. An analysis of 224.6 live days x 34 kg of
XENON10 is an experiment to directly detect weakly interacting massive particle (WIMPs), which may comprise the bulk of the non-baryonic dark matter in our Universe. We report new results for spin-dependent WIMP-nucleon interactions with 129-Xe and 1
We present experimental constraints on the spin-dependent WIMP-nucleon elastic cross sections from the total 129.5 kg-year exposure acquired by the Large Underground Xenon experiment (LUX), operating at the Sanford Underground Research Facility in Le
Chiral effective field theory (EFT) provides a systematic expansion for the coupling of WIMPs to nucleons at the momentum transfers relevant to direct cold dark matter detection. We derive the currents for spin-dependent WIMP scattering off nuclei at
We present new experimental constraints on the WIMP-nucleon spin-dependent elastic cross-sections using data from the first science run of ZEPLIN-III, a two-phase xenon experiment searching for galactic dark matter WIMPs based at the Boulby mine. Ana