ﻻ يوجد ملخص باللغة العربية
Standard Bayesian credible-region theory for constructing an error region on the unique estimator of an unknown state in general quantum-state tomography to calculate its size and credibility relies on heavy Monte~Carlo sampling of the state space followed by sample rejection. This conventional method typically gives negligible yield for very small error regions originating from large datasets. We propose an operational reformulated theory to compute both size and credibility from region-average quantities that in principle convey information about behavior of these two properties as the credible-region changes. We next suggest the accelerated hit-and-run Monte~Carlo sampling, customized to the construction of Bayesian error-regions, to efficiently compute region-average quantities, and provide its complexity estimates for quantum states. Finally by understanding size as the region-average distance between two states in the region (measured for instance with either the Hilbert-Schmidt, trace-class or Bures distance), we derive approximation formulas to analytically estimate both distance-induced size and credibility under the pseudo-Bloch parametrization without resorting to any Monte~Carlo computation.
Computing size and credibility of Bayesian credible regions for certifying the reliability of any point estimator of an unknown parameter (such as a quantum state, channel, phase, emph{etc.}) relies on rejection sampling from the entire parameter spa
The exponential growth in Hilbert space with increasing size of a quantum system means that accurately characterising the system becomes significantly harder with system dimension d. We show that self-guided tomography is a practical, efficient, and
Bayesian inference is a powerful paradigm for quantum state tomography, treating uncertainty in meaningful and informative ways. Yet the numerical challenges associated with sampling from complex probability distributions hampers Bayesian tomography
A Bayesian approach to quantum process tomography has yet to be fully developed due to the lack of appropriate probability distributions on the space of quantum channels. Here, by associating the Choi matrix form of a completely positive, trace prese
Quantum state tomography is a key process in most quantum experiments. In this work, we employ quantum machine learning for state tomography. Given an unknown quantum state, it can be learned by maximizing the fidelity between the output of a variati