ترغب بنشر مسار تعليمي؟ اضغط هنا

Microwave Rabi resonances beyond the small-signal regime

58   0   0.0 ( 0 )
 نشر من قبل Lindsay LeBlanc
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The coupling between microwave fields and atoms (or atom-like systems) is inherently weaker than for optical fields, making microwave signal manipulation for applications like quantum information processing technically challenging. In order to better understand this coupling and to develop tools for measuring it, we explore the microwave coupling to atoms using the atomic candle technique, and push it beyond the bounds of the small-signal regime in order to deliver a larger signal. In familiar two-level systems, responses beyond the usual Rabi oscillations can arise when a single-tone drive is phase-modulated, causing the steady-state populations to oscillate at integer harmonics of the modulation frequency. Resonant behavior of the first two harmonics for frequencies near the Rabi frequency, known as $alpha$ and $beta$ Rabi resonances, is widely used for microwave-field magnetometry and as a power standard known as the atomic candle. Here, we explore Rabi resonances beyond the small-signal approximation and report upon experimental observations of higher-harmonic population response for microwave hyperfine transitions in cold $^{87}rm Rb$ atoms, which we compare to numerical simulations.

قيم البحث

اقرأ أيضاً

We present experimental results on the influence of magnetic fields and laser polarization on electromagnetically induced transparency (EIT) using Rydberg levels of $^{87}$Rb atoms. The measurements are performed in a room temperature vapor cell with two counter-propagating laser beams at 480nm and 780nm in a ladder-type energy level scheme. We measure the EIT spectrum of a range of $ns_{1/2}$ Rydberg states for $n=19-27$, where the hyperfine structure can still be resolved. Our measurements span the range of magnetic fields from the low field linear Zeeman regime to the high field Paschen-Back regimes. The observed spectra are very sensitive to small changes in magnetic fields and the polarization of the laser beams. We model our observations using optical Bloch equations that take into account the full multi-level structure of the atomic states involved and the decoupling of the electronic $J$ and nuclear $I$ angular momenta in the Breit-Rabi regime. The numerical model yields excellent agreement with the observations. In addition to EIT related experiments, our results are relevant for experiments involving coherent excitation to Rydberg levels in the presence of magnetic fields.
We use a quantum sensor based on thermal Rydberg atoms to receive data encoded in electromagnetic fields in the extreme electrically small regime, with a sensing volume over $10^7$ times smaller than the cube of the electric field wavelength. We intr oduce the standard quantum limit for data capacity, and experimentally observe quantum-limited data reception for bandwidths from 10~kHz up to 30~MHz. In doing this, we provide a useful alternative to classical communication antennas, which become increasingly ineffective when the size of the antenna is significantly smaller than the wavelength of the electromagnetic field.
115 - Thomas Lev`eque 2010
In this paper, we report a new scheme to amplify a microwave signal carried on a laser light at $lambda$=852nm. The amplification is done via a semiconductor tapered amplifier and this scheme is used to drive stimulated Raman transitions in an atom i nterferometer. Sideband generation in the amplifier, due to self-phase and amplitude modulation, is investigated and characterized. We also demonstrate that the amplifier does not induce any significant phase-noise on the beating signal. Finally, the degradation of the performances of the interferometer due to the amplification process is shown to be negligible.
We extend a previous result [Phys. Rev. Lett. 105, 090403 (2010)] on Casimir repulsion between a plate with a hole and a cylinder centered above it to geometries in which the central object can no longer be treated as a point dipole. We show through numerical calculations that as the distance between the plate and central object decreases, there is an intermediate regime in which the repulsive force increases dramatically. Beyond this, the force rapidly switches over to attraction as the separation decreases further to zero, in line with the proximity force approximation. We demonstrate that this effect can be understood as a competition between an increased repulsion due to a larger polarizability of the central object interacting with increased fringing fields near the edge of the plate, and attractive forces due primarily to the nonzero thickness of the plate. In comparison with our previous work, we find that using the same plate geometry but replacing the single cylinder with a ring of cylinders, or more generally an extended uniaxial conductor, the repulsive force can be enhanced by a factor of approximately $10^3$. We conclude that this enhancement, although quite dramatic, is still too small to yield detectable repulsive Casimir forces.
We show that the presence of nearby Coulombic resonances at finite energy could lead to the enhancement of the dark matter annihilation cross section at specific non-zero velocities correlated with the mass splitting between the dark matter pair and that of the resonance. If one of these resonant velocities approximately matches the velocity of dark matter in our local neighbourhood, we would see this enhancement in existing indirect-detection measurements, such as the measurements of the continuum photon spectrum made by HESS and Fermi-LAT. We explore this effect in the context of pure Higgsino and Wino dark matter with a variable splitting between charged and neutral components, controlled by the Wilson coefficient of a higher-dimension operator. For electroweak WIMPs a relevant and appreciable enhancement from Coulomb resonances requires tuning the charged-neutral splitting to be of order the Coulomb binding energies. This leads to strong exclusions of Higgsino dark matter with charged-neutral splittings in the narrow ranges (2, 2.5) and (8.5, 10.5) MeV. In contrast, by decreasing the charged-neutral splitting for the thermal Wino, we can move the Yukawa resonance away from the thermal relic mass, decreasing the indirect-detection signal to a level that is compatible with HESS measurements in the window (25, 35) MeV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا