ﻻ يوجد ملخص باللغة العربية
We present a new equation of state (EOS) for dense hydrogen/helium mixtures which covers a range of densities from $10^{-8}$ to $10^6$ g.cm$^{-3}$, pressures from $10^{-9}$ to $10^{13}$ GPa and temperatures from $10^{2}$ to $10^{8}$ K. The calculations combine the EOS of Saumon, Chabrier & vanHorn (1995) in the low density, low temperature molecular/atomic domain, the EOS of Chabrier & Potekhin (1998) in the high-density, high-temperature fully ionized domain, the limits of which differ for H and He, and ab initio quantum molecular dynamics (QMD) calculations in the intermediate density and temperature regime, characteristic of pressure dissociation and ionization. The EOS for the H/He mixture is based on the so-called additive volume law and thus does not take into account the interactions between the two species. A major improvement of the present calculations over existing ones is that we calculate the entropy over the entire density-temperature domain, a necessary quantity for stellar or planetary evolution calculations. The EOS results are compared with existing experimental data, namely Hugoniot shock experiments for pure H and He, and with first principle numerical simulations for both the single elements and the mixture. This new EOS covers a wide range of physical and astrophysical conditions, from jovian planets to solar-type stars, and recovers the existing relativistic EOS at very high densities, in the domains of white dwarfs and neutron stars.
In a recent paper (Chabrier et al. 2019), we have derived a new equation of state (EOS) for dense hydrogen/helium mixtures which covers the temperature-density domain from solar-type stars to brown dwarfs and gaseous planets. This EOS is based on the
We calculate the equation of state of dense hydrogen within the chemical picture. Fluid variational theory is generalized for a multi-component system of molecules, atoms, electrons, and protons. Chemical equilibrium is supposed for the reactions dis
Contrary to what is claimed by Ferrer et al. [Phys. Rev. C 82, 065802 (2010)], the magnetic field of a neutron star cannot exceed 10^{19} G and the thermodynamic pressure of dense magnetized fermion gas is isotropic.
Recent developments in the theory of pure neutron matter and experiments concerning the symmetry energy of nuclear matter, coupled with recent measurements of high-mass neutron stars, now allow for relatively tight constraints on the equation of stat
We present and discuss a wide-range hydrogen equation of state model based on a consistent set of ab initio simulations including quantum protons and electrons. Both the process of constructing this model and its predictions are discussed in detail.