ترغب بنشر مسار تعليمي؟ اضغط هنا

Colored five-vertex models and Demazure atoms

98   0   0.0 ( 0 )
 نشر من قبل Daniel Bump
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Type A Demazure atoms are pieces of Schur functions, or sets of tableaux whose weights sum to such functions. Inspired by colored vertex models of Borodin and Wheeler, we will construct solvable lattice models whose partition functions are Demazure atoms; the proof of this makes use of a Yang-Baxter equation for a colored five-vertex model. As a biproduct, we construct Demazure atoms on Kashiwaras $mathcal{B}_infty$ crystal and give new algorithms for computing Lascoux-Schutzenberger keys.

قيم البحث

اقرأ أيضاً

104 - Anna Ying Pun 2016
This paper studies the properties of Demazure atoms and characters using linear operators and also tableaux-combinatorics. It proves the atom-positivity property of the product of a dominating monomial and an atom, which was an open problem. Furtherm ore, it provides a combinatorial proof to the key-positivity property of the product of a dominating monomial and a key using skyline fillings, an algebraic proof to the key-positivity property of the product of a Schur function and a key using linear operator and verifies the first open case for the conjecture of key-positivity of the product of two keys using linear operators and polytopes.
It is conjectured that every edge-colored complete graph $G$ on $n$ vertices satisfying $Delta^{mon}(G)leq n-3k+1$ contains $k$ vertex-disjoint properly edge-colored cycles. We confirm this conjecture for $k=2$, prove several additional weaker result s for general $k$, and we establish structural properties of possible minimum counterexamples to the conjecture. We also reveal a close relationship between properly edge-colored cycles in edge-colored complete graphs and directed cycles in multi-partite tournaments. Using this relationship and our results on edge-colored complete graphs, we obtain several partial solutions to a conjecture on disjoint cycles in directed graphs due to Bermond and Thomassen.
We give a recursive method for computing all values of a basis of Whittaker functions for unramified principal series invariant under an Iwahori or parahoric subgroup of a split reductive group $G$ over a nonarchimedean local field $F$. Structures in the proof have surprising analogies to features of certain solvable lattice models. In the case $G=mathrm{GL}_r$ we show that there exist solvable lattice models whose partition functions give precisely all of these values. Here `solvable means that the models have a family of Yang-Baxter equations which imply, among other things, that their partition functions satisfy the same recursions as those for Iwahori or parahoric Whittaker functions. The R-matrices for these Yang-Baxter equations come from a Drinfeld twist of the quantum group $U_q(widehat{mathfrak{gl}}(r|1))$, which we then connect to the standard intertwining operators on the unramified principal series. We use our results to connect Iwahori and parahoric Whittaker functions to variations of Macdonald polynomials.
We show that a tensor product of nonexceptional type Kirillov--Reshetikhin (KR) crystals is isomorphic to a direct sum of Demazure crystals; we do this in the mixed level case and without the perfectness assumption, thus generalizing a result of Naoi . We use this result to show that, given two tensor products of such KR crystals with the same maximal weight, after removing certain $0$-arrows, the two connected components containing the minimal/maximal elements are isomorphic. Based on the latter fact, we reduce a tensor product of higher level perfect KR crystals to one of single-column KR crystals, which allows us to use the uniform models available in the literature in the latter case. We also use our results to give a combinatorial interpretation of the Q-system relations. Our results are conjectured to extend to the exceptional types.
In an edge-colored graph $(G,c)$, let $d^c(v)$ denote the number of colors on the edges incident with a vertex $v$ of $G$ and $delta^c(G)$ denote the minimum value of $d^c(v)$ over all vertices $vin V(G)$. A cycle of $(G,c)$ is called proper if any t wo adjacent edges of the cycle have distinct colors. An edge-colored graph $(G,c)$ on $ngeq 3$ vertices is called properly vertex-pancyclic if each vertex of $(G,c)$ is contained in a proper cycle of length $ell$ for every $ell$ with $3 le ell le n$. Fujita and Magnant conjectured that every edge-colored complete graph on $ngeq 3$ vertices with $delta^c(G)geq frac{n+1}{2}$ is properly vertex-pancyclic. Chen, Huang and Yuan partially solve this conjecture by adding an extra condition that $(G,c)$ does not contain any monochromatic triangle. In this paper, we show that this conjecture is true if the edge-colored complete graph contain no joint monochromatic triangles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا