ترغب بنشر مسار تعليمي؟ اضغط هنا

Climbing Halo Merger Trees with TreeFrog

107   0   0.0 ( 0 )
 نشر من قبل Pascal Elahi
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present TreeFrog, a massively parallel halo merger tree builder that is capable comparing different halo catalogues and producing halo merger trees. The code is written in c++11, use the MPI and OpenMP APIs for parallelisation, and includes python tools to read/manipulate the data products produced. The code correlates binding energy sorted particle ID lists between halo catalogues, determining optimal descendant/progenitor matches using multiple snapshots, a merit function that maximises the number of shared particles using pseudo-radial moments, and a scheme for correcting halo merger tree pathologies. Focusing on VELOCIraptor catalogues for this work, we demonstrate how searching multiple snapshots spanning a dynamical time significantly reduces the number of stranded halos, those lacking a descendant or a progenitor, critically correcting poorly resolved halos. We present a new merit function that improves the distinction between primary and secondary progenitors, reducing tree pathologies. We find FOF accretion rates and merger rates show similar mass ratio dependence. The model merger rates from Poole et al, (2017) agree with the measured net growth of halos through mergers.



قيم البحث

اقرأ أيضاً

We present a new Monte-Carlo algorithm to generate merger trees describing the formation history of dark matter halos. The algorithm is a modification of the algorithm of Cole et al (2000) used in the GALFORM semi-analytic galaxy formation model. As such, it is based on the Extended Press-Schechter theory and so should be applicable to hierarchical models with a wide range of power spectra and cosmological models. It is tuned to be in accurate agreement with the conditional mass functions found in the analysis of merger trees extracted from the LCDM Millennium N-body simulation. We present a comparison of its predictions not only with these conditional mass functions, but also with additional statistics of the Millennium Simulation halo merger histories. In all cases we find it to be in good agreement with the Millennium Simulation and thus it should prove to be a very useful tool for semi-analytic models of galaxy formation and for modelling hierarchical structure formation in general. We have made our merger tree generation code and code to navigate the trees available at http://star-www.dur.ac.uk/~cole/merger_trees .
115 - Peter S. Behroozi 2011
We present a new algorithm for generating merger trees and halo catalogs which explicitly ensures consistency of halo properties (mass, position, and velocity) across timesteps. Our algorithm has demonstrated the ability to improve both the completen ess (through detecting and inserting otherwise missing halos) and purity (through detecting and removing spurious objects) of both merger trees and halo catalogs. In addition, our method is able to robustly measure the self-consistency of halo finders; it is the first to directly measure the uncertainties in halo positions, halo velocities, and the halo mass function for a given halo finder based on consistency between snapshots in cosmological simulations. We use this algorithm to generate merger trees for two large simulations (Bolshoi and Consuelo) and evaluate two halo finders (ROCKSTAR and BDM). We find that both the ROCKSTAR and BDM halo finders track halos extremely well; in both, the number of halos which do not have physically consistent progenitors is at the 1-2% level across all halo masses. Our code is publicly available at http://code.google.com/p/consistent-trees . Our trees and catalogs are publicly available at http://hipacc.ucsc.edu/Bolshoi/ .
Merger tree codes are routinely used to follow the growth and merger of dark matter haloes in simulations of cosmic structure formation. Whereas in Srisawat et. al. we compared the trees built using a wide variety of such codes here we study the infl uence of the underlying halo catalogue upon the resulting trees. We observe that the specifics of halo finding itself greatly influences the constructed merger trees. We find that the choices made to define the halo mass are of prime importance. For instance, amongst many potential options different finders select self-bound objects or spherical regions of defined overdensity, decide whether or not to include substructures within the mass returned and vary in their initial particle selection. The impact of these decisions is seen in tree length (the period of time a particularly halo can be traced back through the simulation), branching ratio (essentially the merger rate of subhalos) and mass evolution. We therefore conclude that the choice of the underlying halo finder is more relevant to the process of building merger trees than the tree builder itself. We also report on some built-in features of specific merger tree codes that (sometimes) help to improve the quality of the merger trees produced.
Linking the properties of galaxies to the assembly history of their dark matter haloes is a central aim of galaxy evolution theory. This paper introduces a dimensionless parameter $sin[0,1]$, the tree entropy, to parametrise the geometry of a halos e ntire mass assembly hierarchy, building on a generalisation of Shannons information entropy. By construction, the minimum entropy ($s=0$) corresponds to smoothly assembled haloes without any mergers. In contrast, the highest entropy ($s=1$) represents haloes grown purely by equal-mass binary mergers. Using simulated merger trees extracted from the cosmological $N$-body simulation SURFS, we compute the natural distribution of $s$, a skewed bell curve peaking near $s=0.4$. This distribution exhibits weak dependences on halo mass $M$ and redshift $z$, which can be reduced to a single dependence on the relative peak height $delta_{rm c}/sigma(M,z)$ in the matter perturbation field. By exploring the correlations between $s$ and global galaxy properties generated by the SHARK semi-analytic model, we find that $s$ contains a significant amount of information on the morphology of galaxies $-$ in fact more information than the spin, concentration and assembly time of the halo. Therefore, the tree entropy provides an information-rich link between galaxies and their dark matter haloes.
The cosmic web plays a major role in the formation and evolution of galaxies and defines, to a large extent, their properties. However, the relation between galaxies and environment is still not well understood. Here we present a machine learning app roach to study imprints of environmental effects on the mass assembly of haloes. We present a galaxy-LSS machine learning classifier based on galaxy properties sensitive to the environment. We then use the classifier to assess the relevance of each property. Correlations between galaxy properties and their cosmic environment can be used to predict galaxy membership to void/wall or filament/cluster with an accuracy of $93%$. Our study unveils environmental information encoded in properties of haloes not normally considered directly dependent on the cosmic environment such as merger history and complexity. Understanding the physical mechanism by which the cosmic web is imprinted in a halo can lead to significant improvements in galaxy formation models. This is accomplished by extracting features from galaxy properties and merger trees, computing feature scores for each feature and then applying support vector machine to different feature sets. To this end, we have discovered that the shape and depth of the merger tree, formation time and density of the galaxy are strongly associated with the cosmic environment. We describe a significant improvement in the original classification algorithm by performing LU decomposition of the distance matrix computed by the feature vectors and then using the output of the decomposition as input vectors for support vector machine.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا