ترغب بنشر مسار تعليمي؟ اضغط هنا

Electron energy partition across interplanetary shocks: I. Methodology and Data Product

248   0   0.0 ( 0 )
 نشر من قبل Lynn Wilson III
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Analysis of 15314 electron velocity distribution functions (VDFs) within $pm$2 hours of 52 interplanetary (IP) shocks observed by the emph{Wind} spacecraft near 1 AU are introduced. The electron VDFs are fit to the sum of three model functions for the cold dense core, hot tenuous halo, and field-aligned beam/strahl component. The best results were found by modeling the core as either a bi-kappa or a symmetric (or asymmetric) bi-self-similar velocity distribution function, while both the halo and beam/strahl components were best fit to bi-kappa velocity distribution function. This is the first statistical study to show that the core electron distribution is better fit to a self-similar velocity distribution function than a bi-Maxwellian under all conditions. The self-similar distribution deviation from a Maxwellian is a measure of inelasticity in particle scattering from waves and/or turbulence. The range of values defined by the lower and upper quartiles for the kappa exponents are $kappa{scriptstyle_{ec}}$ $sim$ 5.40--10.2 for the core, $kappa{scriptstyle_{eh}}$ $sim$ 3.58--5.34 for the halo, and $kappa{scriptstyle_{eb}}$ $sim$ 3.40--5.16 for the beam/strahl. The lower-to-upper quartile range of symmetric bi-self-similar core exponents are $s{scriptstyle_{ec}}$ $sim$ 2.00--2.04, and asymmetric bi-self-similar core exponents are $p{scriptstyle_{ec}}$ $sim$ 2.20--4.00 for the parallel exponent, and $q{scriptstyle_{ec}}$ $sim$ 2.00--2.46 for the perpendicular exponent. The nuanced details of the fit procedure and description of resulting data product are also presented. The statistics and detailed analysis of the results are presented in Paper II and Paper III of this three-part study.



قيم البحث

اقرأ أيضاً

A statistical analysis of 15,210 electron velocity distribution function (VDF) fits, observed within $pm$2 hours of 52 interplanetary (IP) shocks by the $Wind$ spacecraft near 1 AU, is presented. This is the second in a three-part series on electron VDFs near IP shocks. The electron velocity moment statistics for the dense, low energy core, tenuous, hot halo, and field-aligned beam/strahl are a statistically significant list of values illustrated with both histograms and tabular lists for reference and baselines in future work. The beam/strahl fit results in the upstream are currently the closest thing to a proper parameterization of the beam/strahl electron velocity moments in the ambient solar wind. This work will also serve as a 1 AU baseline and reference for missions like $Parker Solar Probe$ and $Solar Orbiter$. The median density, temperature, beta, and temperature anisotropy values for the core(halo)[beam/strahl] components, with subscripts $ec$($eh$)[$eb$], of all fit results respectively are $n{scriptstyle_{ec(h)[b]}}$ $sim$ 11.3(0.36)[0.17] $cm^{-3}$, $T{scriptstyle_{ec(h)[b], tot}}$ $sim$ 14.6(48.4)[40.2] $eV$, $beta{scriptstyle_{ec(h)[b], tot}}$ $sim$ 0.93(0.11)[0.05], and $mathcal{A}{scriptstyle_{ec(h)[b]}}$ $sim$ 0.98(1.03)[0.93]. The nuanced details of the fitting method and data product description were published in Paper I and the detailed analysis of the results will be shown in Paper III.
Analysis of model fit results of 15,210 electron velocity distribution functions (VDFs), observed within $pm$2 hours of 52 interplanetary (IP) shocks by the Wind spacecraft near 1 AU, is presented as the third and final part on electron VDFs near IP shocks. The core electrons and protons dominate in the magnitude and change in the partial-to-total thermal pressure ratio, with the core electrons often gaining as much or more than the protons. Only a moderate positive correlation is observed between the electron temperature and the kinetic energy change across the shock, while weaker, if any, correlations were found with any other macroscopic shock parameter. No VDF parameter correlated with the shock normal angle. The electron VDF evolves from a narrowly peaked core with flaring suprathermal tails in the upstream to either a slightly hotter core with steeper tails or much hotter flattop core with even steeper tails downstream of the weaker and strongest shocks, respectively. Both quasi-static and fluctuating fields are examined as possible mechanisms modifying the VDF but neither is sufficient alone. For instance, flattop VDFs can be generated by nonlinear ion acoustic wave stochastic acceleration (i.e., inelastic collisions) while other work suggested they result from the combination of quasi-static and fluctuating fields. This three-part study shows that not only are these systems not thermodynamic in nature, even kinetic models may require modification to include things like inelastic collision operators to properly model electron VDF evolution across shocks or in the solar wind.
221 - G. Qin , F.-J. Kong , S.-S. Wu 2020
We present a study of the acceleration efficiency of suprathermal electrons at collisionless shock waves driven by interplanetary coronal mass ejections (ICMEs), with the data analysis from both the spacecraft observations and test-particle simulatio ns. The observations are from the 3DP/EESA instrument onboard emph{Wind} during the 74 shock events listed in Yang et al. 2019, ApJ, and the test-particle simulations are carried out through 315 cases with different shock parameters. It is shown that a large shock-normal angle, upstream Alfv$acute{text e}$n Mach number, and shock compression ratio would enhance the shock acceleration efficiency. In addition, we develop a theoretical model of the critical shock normal angle for efficient shock acceleration by assuming the shock drift acceleration to be efficient. We also obtain models for the critical values of Mach number and compression ratio with efficient shock acceleration, based on the suggestion of Drury 1983 about the average momentum change of particle crossing of shock. It is shown that the theories have similar trends of the observations and simulations. Therefore, our results suggest that the shock drift acceleration is efficient in the electron acceleration by ICME-driven shocks, which confirms the findings of Yang et al.
We study periods of elevated energetic particle intensities observed by STEREO-A when the partial pressure exerted by energetic ($geq$83 keV) protons ($P_{EP}$) is larger than the pressure exerted by the interplanetary magnetic field ($P_{B}$). In th e majority of cases, these periods are associated with the passage of interplanetary shocks. Periods when $P_{EP}$ exceeds $P_{B}$ by more than one order of magnitude are observed in the upstream region of fast interplanetary shocks where depressed magnetic field regions coincide with increases of the energetic particle intensities. When solar wind parameters are available, $P_{EP}$ also exceeds the pressure exerted by the solar wind thermal population ($P_{TH}$). Prolonged periods ($>$12 h) with both $P_{EP}$$>$$P_{B}$ and $P_{EP}$$>$$P_{TH}$ may also occur when energetic particles accelerated by an approaching shock encounter a region well-upstream of the shock characterized by low magnetic field magnitude and tenuous solar wind density. Quasi-exponential increases of the sum $P_{SUM}$=$P_{B}$+$P_{TH}$+$P_{EP}$ are observed in the immediate upstream region of the shocks regardless of individual changes in $P_{EP}$, $P_{B}$ and $P_{TH}$, indicating a coupling between $P_{EP}$ and the pressure of the background medium characterized by $P_{B}$ and $P_{TH}$. The quasi-exponential increase of $P_{SUM}$ implies a convected exponential radial gradient $partial{P_{SUM}}/partial{r}$$>$0 that results in an outward force applied to the plasma upstream of the shock. This force can be maintained by the mobile energetic particles streaming upstream of the shocks that, in the most intense events, drive electric currents able to generate diamagnetic cavities and depressed solar wind density regions.
We present waveform observations of electromagnetic lower hybrid and whistler waves with f_ci << f < f_ce downstream of four supercritical interplanetary (IP) shocks using the Wind search coil magnetometer. The whistler waves were observed to have a weak positive correlation between partialB and normalized heat flux magnitude and an inverse correlation with T_eh/T_ec. All were observed simultaneous with electron distributions satisfying the whistler heat flux instability threshold and most with T_{perp,h}/T_{para,h} > 1.01. Thus, the whistler mode waves appear to be driven by a heat flux instability and cause perpendicular heating of the halo electrons. The lower hybrid waves show a much weaker correlation between partialB and normalized heat flux magnitude and are often observed near magnetic field gradients. A third type of event shows fluctuations consistent with a mixture of both lower hybrid and whistler mode waves. These results suggest that whistler waves may indeed be regulating the electron heat flux and the halo temperature anisotropy, which is important for theories and simulations of electron distribution evolution from the sun to the earth.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا