ﻻ يوجد ملخص باللغة العربية
I construct the class of supernovae and supernova progenitors that result from fatal common envelope evolution (CEE). The fatal CEE progenitors are stellar binary systems where a companion spirals-in inside the envelope of a giant star and merges with the core. The companion can be a neutron star (NS; or a black hole) that destroys the core and by that forms a common envelope jets supernova (CEJSN), a white dwarf (WD) that merges with the core to form a massive WD that later might explode as a Type Ia supernova (the core degenerate scenario), or a main sequence companion. In the latter case the outcome might be a core collapse supernova (CCSN) of a blue giant, a CCSN of type IIb or of type Ib. In another member of this class two giant stars merge and the two cores spiral-in toward each other to form a massive core that later explodes as a CCSN with a massive circumstellar matter (CSM). I discuss the members of this class, their characteristics, and their common properties. I find that fatal CEE events account for $approx 6-10 %$ of all CCSNe, and raise the possibility that a large fraction of peculiar and rare supernovae result from the fatal CEE. The study of these supernova progenitors as a class will bring insights on other types of supernova progenitors, as well as on the outcome of the CEE.
I study a triple star common envelope evolution (CEE) of a tight binary system that is spiraling-in inside a giant envelope and launches jets that spin-up the envelope with an angular momentum component perpendicular to the orbital angular momentum o
Diffusion of elements in the atmosphere and envelope of a star can drastically alter its surface composition, leading to extreme chemical peculiarities. We consider the case of hot subdwarfs, where surface helium abundances range from practically zer
Post-asymptotic giant branch (post-AGB) stars with discs are all binaries. Many of these binaries have orbital periods between 100 and 1000 days so cannot have avoided mass transfer between the AGB star and its companion, likely through a common-enve
The common envelope phase of binary star evolution plays a central role in many evolutionary pathways leading to the formation of compact objects in short period systems. Using three dimensional hydrodynamical computations, we review the major featur
Common-envelope (CE) evolution in massive binary systems is thought to be one of the most promising channels for the formation of compact binary mergers. In the case of merging binary black holes (BBHs), the essential CE phase takes place at a stage