ﻻ يوجد ملخص باللغة العربية
The advantage of quantum metrology has been experimentally demonstrated for phase estimations where the dynamics are commuting. General noncommuting dynamics, however, can have distinct features. For example, the direct sequential scheme, which can achieve the Heisenberg scaling for the phase estimation under commuting dynamics, can have even worse performances than the classical scheme under noncommuting dynamics. Here we realize a scalable optimally controlled sequential scheme, which can achieve the Heisenberg precision under general noncommuting dynamics. We also present an intuitive geometrical framework for the controlled scheme and identify sweet spots in time at which the optimal controls used in the scheme can be pre-fixed without adaptation, which simplifies the experimental protocols significantly. We successfully implement the scheme up to eight controls in an optical platform, demonstrate a precision near the Heisenberg limit. Our work opens the avenue for harvesting the power of quantum control in quantum metrology, and provides a control-enhanced recipe to achieve the Heisenberg precision under general noncommuting dynamics.
We provide efficient and intuitive tools for deriving bounds on achievable precision in quantum enhanced metrology based on the geometry of quantum channels and semi-definite programming. We show that when decoherence is taken into account, the maxim
We study the interplay of control and parameter estimation on a quantum spin chain. A single qubit probe is attached to one end of the chain, while we wish to estimate a parameter on the other end. We find that control on the probe qubit can substant
Measurement and estimation of parameters are essential for science and engineering, where one of the main quests is to find systematic schemes that can achieve high precision. While conventional schemes for quantum parameter estimation focus on the o
We propose a quantum metrology protocol for measuring frequencies and weak forces based on a periodic modulating quantum Jahn-Teller system composed of a single spin interacting with two bosonic modes. We show that in the first order of the frequency
We calculate the quantum Cramer--Rao bound for the sensitivity with which one or several parameters, encoded in a general single-mode Gaussian state, can be estimated. This includes in particular the interesting case of mixed Gaussian states. We appl