ﻻ يوجد ملخص باللغة العربية
In this paper, we study a natural class of groups that act as affine transformations of $mathbb T^N$. We investigate whether these solvable, abelian-by-cyclic, groups can act smoothly and nonaffinely on $mathbb T^N$ while remaining homotopic to the affine actions. In the affine actions, elliptic and hyperbolic dynamics coexist, forcing a priori complicated dynamics in nonaffine perturbations. We first show, using the KAM method, that any small and sufficiently smooth perturbation of such an affine action can be conjugated smoothly to an affine action, provided certain Diophantine conditions on the action are met. In dimension two, under natural dynamical hypotheses, we get a complete classification of such actions; namely, any such group action by $C^r$ diffeomorphims can be conjugated to the affine action by $C^{r-epsilon}$ conjugacy. Next, we show that in any dimension, $C^1$ small perturbations can be conjugated to an affine action via $C^{1+epsilon}$ conjugacy. The method is a generalization of the Herman theory for circle diffeomorphisms to higher dimensions in the presence of a foliation structure provided by the hyperbolic dynamics.
For groups of diffeomorphisms of $T^2$ containing an Anosov diffeomorphism, we give a complete classification for polycyclic Abelian-by-Cyclic group actions on $T^2$ up to both topological conjugacy and smooth conjugacy under mild assumptions. Along
We prove that for any two continuous minimal (topologically free) actions of the infinite dihedral group on an infinite compact Hausdorff space, they are continuously orbit equivalent only if they are conjugate. We also show the above fails if we rep
The purpose of this paper is to study the phenomenon of large intersections in the framework of multiple recurrence for measure-preserving actions of countable abelian groups. Among other things, we show: (1) If $G$ is a countable abelian group and $
Let $X$ be a regular curve and $n$ be a positive integer such that for every nonempty open set $Usubset X$, there is a nonempty connected open set $Vsubset U$ with the cardinality $|partial_X(V)|leq n$. We show that if $X$ admits a sensitive action o
We obtain a sufficient condition for a substitution ${mathbb Z}$-action to have pure singular spectrum in terms of the top Lyapunov exponent of the spectral cocycle introduced in arXiv:1802.04783 by the authors. It is applied to a family of examples,