ﻻ يوجد ملخص باللغة العربية
MXene-based heterostructures have received considerable interest owing to their unique properties. Herein, we examine various heterostructures of a prototypical MXene and graphene using density functional theory. We find that the adhesion energy, charge transfer, and band structure of these heterostructures are sensitive not only to the surface functional group, but also to the stacking order. Difference in work function dictates the direction and amount of electron transfer across the interface, which causes a shift in the Dirac point of the graphene bands in the heterostructures of monolayer graphene and monolayer MXene. In the heterostructures of bilayer graphene and monolayer MXene, the interface breaks the symmetry of the bilayer graphene; in the case of the AB-stacking bilayer, the electron transfer leads to an interfacial electric field that opens up a gap in the graphene bands at the K point. This internal polarization strengthens both the interfacial adhesions and the cohesion between the two graphene layers. The MXene-graphene-MXene and graphene-MXene-graphene sandwich structures behave as two mirror-symmetric MXene-graphene interfaces. Our first principles studies provide a comprehensive understanding for the interaction between a typical MXene and graphene.
Hybrid materials of MXenes (2D carbides and nitrides) and transition-metal oxides (TMOs) have shown great promise in electrical energy storage and 2D heterostructures have been proposed as the next-generation electrode materials to expand the limits
Graphite is a well-studied material with known electronic and optical properties. Graphene, on the other hand, which is just one layer of carbon atoms arranged in a hexagonal lattice, has been studied theoretically for quite some time but has only re
The electronic and optical response of Bernal stacked bilayer graphene with geometry modulation and gate voltage are studied. The broken symmetry in sublattices, one dimensional periodicity perpendicular to the domain wall and out-of-plane axis intro
We use first-principle density functional theory (DFT) to study the transport properties of single and double barrier heterostructures realized by stacking multilayer h-BN or BC$_{2}$N, and graphene films between graphite leads. The heterostructures
We present first-principles calculations of silicene/graphene and germanene/graphene bilayers. Various supercell models are constructed in the calculations in order to reduce the strain of the lattice-mismatched bilayer systems. Our energetics analys