ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence for Triangular D(3h) Symmetry in 13C

270   0   0.0 ( 0 )
 نشر من قبل Roelof Bijker
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We derive the rotation-vibration spectrum of a 3alpha+1 neutron (proton) configuration with triangular D(3h) symmetry by exploiting the properties of the double group D(3h), and show evidence for this symmetry to occur in the rotation-vibration spectra of 13C. Our results, based on purely symmetry considerations, provide benchmarks for microscopic calculations of the cluster structure of light nuclei.

قيم البحث

اقرأ أيضاً

135 - R. Bijker , F. Iachello 2020
We study the cluster structure of 20Ne and show that the available experimental data can be well described by a bi-pyramidal structure with D(3h) symmetry. Strong evidence for the occurrence of this symmetry comes from the observation of all nine exp ected vibrational modes (3 singly degenerate and 3 doubly degenerate) and of six (singly degenerate) double vibrational modes. 20Ne appears to be another example of the simplicity in complexity program, in which simple spectroscopic features arise out of a complex many-body system.
We report a measurement of a new high spin Jp = 5- state at 22.4(0.2) MeV in 12C which fits very well to the predicted (ground state) rotational band of an oblate equilateral triangular spinning top with a D_3h symmetry characterized by the sequence 0+, 2+, 3-, 4+/-, 5- with almost degenerate 4+ and 4- (parity doublet) states. Such a D_3h symmetry was observed in triatomic molecules and it is observed here for the first time in nuclear physics. We discuss a classification of other rotation-vibration bands in 12C such as the (0+) Hoyle band and the (1-) bending mode band and suggest measurements in search of the predicted (missing) states that may shed new light on clustering in 12C and light nuclei. In particular the observation (or non-observation) of the predicted (missing) states in the Hoyle band will allow us to conclude the geometrical arrangement of the three alpha-particle composing the Hoyle state at 7.654 MeV in 12C.
In this contribution, we present evidence for the occurrence of triangular symmetry in cluster nuclei. We discuss the structure of rotational bands for 3-alpha and 3-alpha+1 configurations with triangular D(3h) symmetry by exploiting the double group D(3h), and study the application to 12C and 13C. The structure of rotational bands can be used as a fingerprint of the underlying geometric configuration of alpha-particles.
129 - S. Shin , B. Zhou , M. Kimura 2021
To identify the 3alpha BEC state with the excess neutron, we have investigated the monopole strength of the excited states of 13C by using the theoretical framework of the real-time evolution method. The calculations have revealed several candidates of the Hoyle-analog states in a highly excited region.
p-3H and n-3He scattering in the energy range above the n-3He but below the d-d thresholds is studied by solving the 4-nucleon problem with a realistic nucleon-nucleon interaction. Three different methods -- Alt, Grassberger and Sandhas, Hyperspheric al Harmonics, and Faddeev-Yakubovsky -- have been employed and their results for both elastic and charge-exchange processes are compared. We observe a good agreement between the three different methods, thus the obtained results may serve as a benchmark. A comparison with the available experimental data is also reported and discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا