ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutron Star Interior Composition Explorer X-ray Timing of the Radio and Gamma-ray Quiet Pulsars PSR J1412+7922 AND PSR J1849-0001

104   0   0.0 ( 0 )
 نشر من قبل Slavko Bogdanov
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present new timing and spectral analyses of PSR J1412+7922 (Calvera) and PSR J1849-0001, which are only seen as pulsars in X-rays, based on observations conducted with the Neutron Star Interior Composition Explorer (NICER). We obtain updated and substantially improved pulse ephemerides compared to previous X-ray studies, as well as spectra that can be well-fit by simple blackbodies and/or a power law. Our refined timing measurements enable deeper searches for pulsations at other wavelengths and sensitive targeted searches by LIGO/Virgo for continuous gravitational waves from these neutron stars. Using the sensitivity of LIGOs first observing run, we estimate constraints that a gravitational wave search of these pulsars would obtain on the size of their mass deformation and r-mode fluid oscillation.



قيم البحث

اقرأ أيضاً

115 - P. S. Ray , M. Kerr , D. Parent 2010
We present precise phase-connected pulse timing solutions for 16 gamma-ray-selected pulsars recently discovered using the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope plus one very faint radio pulsar (PSR J1124-5916) that is more effectively timed with the LAT. We describe the analysis techniques including a maximum likelihood method for determining pulse times of arrival from unbinned photon data. A major result of this work is improved position determinations, which are crucial for multi-wavelength follow up. For most of the pulsars, we overlay the timing localizations on X-ray images from Swift and describe the status of X-ray counterpart associations. We report glitches measured in PSRs J0007+7303, J1124-5916, and J1813-1246. We analyze a new 20 ks Chandra ACIS observation of PSR J0633+0632 that reveals an arcminute-scale X-ray nebula extending to the south of the pulsar. We were also able to precisely localize the X-ray point source counterpart to the pulsar and find a spectrum that can be described by an absorbed blackbody or neutron star atmosphere with a hard powerlaw component. Another Chandra ACIS image of PSR J1732-3131 reveals a faint X-ray point source at a location consistent with the timing position of the pulsar. Finally, we present a compilation of new and archival searches for radio pulsations from each of the gamma-ray-selected pulsars as well as a new Parkes radio observation of PSR J1124-5916 to establish the gamma-ray to radio phase offset.
We present X-ray observations of the redback eclipsing radio millisecond pulsar and candidate radio pulsar/X-ray binary transition object PSR J1723-2837. The X-ray emission from the system is predominantly non-thermal and exhibits pronounced variabil ity as a function of orbital phase, with a factor of ~2 reduction in brightness around superior conjunction. Such temporal behavior appears to be a defining characteristic of this variety of peculiar millisecond pulsar binaries and is likely caused by a partial geometric occultation by the main-sequence-like companion of a shock within the binary. There is no indication of diffuse X-ray emission from a bow shock or pulsar wind nebula associated with the pulsar. We also report on a search for point source emission and $gamma$-ray pulsations in Fermi Large Area Telescope data using a likelihood analysis and photon probability weighting. Although PSR J1723-2837 is consistent with being a $gamma$-ray point source, due to the strong Galactic diffuse emission at its position a definitive association cannot be established. No statistically significant pulsations or modulation at the orbital period are detected. For a presumed source detection, the implied $gamma$-ray luminosity is $lesssim$5% of its spin-down power. This indicates that PSR J1723-2837 is either one of the least efficient $gamma$-ray producing millisecond pulsars or, if the detection is spurious, the $gamma$-ray emission pattern is not directed towards us.
Observations obtained in the last years challenged the widespread notion that rotation-powered neutron stars are steady X-ray emitters. Besides a few allegedly rotation-powered neutron stars that showed magnetar-like variability, a particularly inter esting case is that of PSR B0943+10. Recent observations have shown that this pulsar, well studied in the radio band where it alternates between a bright and a quiescent mode, displays significant X-ray variations, anticorrelated in flux with the radio emission. The study of such synchronous radio/X-ray mode switching opens a new window to investigate the processes responsible for the pulsar radio and high-energy emission. Here we review the main X-ray properties of PSR B0943+10 derived from recent coordinated X-ray and radio observations.
102 - H.H.Wang , J. Takata. 2018
PSR~J2021+4026 showed a sudden decrease in the gamma-ray emission at the glitch that occurred around 2011, October 16, and a relaxation of the flux to the pre-glitch state at around 2014 December. We report X-ray analysis results of the data observed by XMM-Newton on 2015 December 20 in the post-relaxation state. To examine any change in the X-ray emission, we compare the properties of the pulse profiles and spectra at the low gamma-ray flux state and at the post-relaxation state. The phase-averaged spectra for both states can be well described by a power-law component plus a blackbody component. The former is dominated by unpulsed emission and is probably originated from the pulsar wind nebula as reported by Hui et al (2015). The emission property of the blackbody component is consistent with the emission from the polar cap heated by the back-flow bombardment of the high-energy electrons or positrons that were accelerated in the magnetosphere. We found no significant change in the X-ray emission properties between two states. We suggest that the change of the X-ray luminosity is at an order of ~4%, which is difficult to measure with the current observations. We model the observed X-ray light curve with the heated polar cap emission and we speculate that the observed large pulsed fraction is owing to asymmetric magnetospheric structure.
We report the detection of X-ray pulsations from the rotation-powered millisecond-period pulsars PSR J0740+6620 and PSR J1614-2230, two of the most massive neutron stars known, using observations with the Neutron Star Interior Composition Explorer (N ICER). We also analyze X-ray Multi-Mirror Mission (XMM-Newton) data for both pulsars to obtain their time-averaged fluxes and study their respective X-ray fields. PSR J0740+6620 exhibits a broad double-peaked profile with a separation of ~0.4 in phase. PSR J1614-2230, on the other hand, has a broad single-peak profile. The broad modulations with soft X-ray spectra of both pulsars are indicative of thermal radiation from one or more small regions of the stellar surface. We show the NICER detections of X-ray pulsations for both pulsars and also discuss the phase relationship to their radio pulsations. In the case of PSR J0740+6620, this paper documents the data reduction performed to obtain the pulsation detection and prepare for pulse profile modeling analysis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا