ﻻ يوجد ملخص باللغة العربية
Stars of $sim$ 8 - 10 $M_{odot}$ on the main-sequence form strongly electron-degenerate O+Ne+Mg core and become super-AGB stars. If such an O+Ne+Mg core grows to 1.38 $M_odot$, electron captures on $^{20}$Ne$(e, u_e)^{20}$F$(e, u_e)^{20}$O take place and ignite O-Ne deflagration around the center. In this paper, we perform two-dimensional hydrodynamics simulations of the propagation of the O-Ne flame to see whether such a flame induces a collapse of the O+Ne+Mg core due to subsequent electron capture behind the flame or triggers a thermonuclear explosion. We present a series of models to explore how the outcome depends on model parameters for the central density in the range from $10^{9.80}$ to $10^{10.20}$ g cm$^{-3}$, flame structure of both centered and off-centered ignition kernels, special and general relativistic effects, turbulent flame speed formula and the treatments of laminar burning phase. We find that the O+Ne+Mg core obtained from stellar evolutionary models has a high tendency to collapse into a neutron star. We obtain the bifurcation between the electron-capture collapse and thermonuclear explosion. We discuss the implication in nucleosynthesis and the possible observational signals of this class of supernovae.
We examine nucleosynthesis in the electron capture supernovae of progenitor AGB stars with an O-Ne-Mg core (with the initial stellar mass of 8.8 M_odot). Thermodynamic trajectories for the first 810 ms after core bounce are taken from a recent state-
An electron-capture supernova (ECSN) is a core-collapse supernova (CCSN) explosion of a super-asymptotic giant branch (SAGB) star with a main-sequence mass $M_{rm ms}sim7-9.5M_odot$. The explosion takes place in accordance with core bounce and subseq
We present comprehensive photometric and spectroscopic observations of the faint transient SN 2008S discovered in NGC 6946. SN 2008S exhibited slow photometric evolution and almost no spectral variability during the first nine months, implying a high
The impact of electron-capture (EC) cross sections on neutron-rich nuclei on the dynamics of core-collapse during infall and early post-bounce is studied performing spherically symmetric simulations in general relativity using a multigroup scheme for
We describe our first attempt at modelling nucleosynthesis in massive AGB stars which have undergone core carbon burning, the super-AGB stars. We fit a synthetic model to detailed stellar evolution models in the mass range 9<=M/Msun<=11.5 (Z=0.02), a