ﻻ يوجد ملخص باللغة العربية
An extended Hubbard model on a honeycomb lattice with two orbitals per site at charge neutrality is investigated with unbiased large-scale quantum Monte Carlo simulations. The Fermi velocity of the Dirac fermions is renormalized as the cluster charge interaction increases, until a mass term emerges and a quantum phase transition from Dirac semi-metal to valence bond solid (VBS) insulator is established. The quantum critical point is discovered to belong to 3D $N=4$ Gross-Neveu chiral XY universality with the critical exponents obtained at high precision. Further enhancement of the interaction drives the system into two different VBS phases, the properties and transition between them are also revealed. Since the model is related to magic-angle twisted bilayer graphene, our results may have relevance towards the symmetry breaking order at the charge neutrality point of the material, and associate the wide range of universal strange metal behavior around it with quantum critical fluctuations.
The flat bands of magic-angle twisted bilayer graphene (MATBG) host strongly-correlated electronic phases such as correlated insulators, superconductors and a strange metal state. The latter state, believed to hold the key to a deeper understanding o
We present a systematic study of the low-energy collective modes for different insulating states at integer fillings in twisted bilayer graphene. In particular, we provide a simple counting rule for the total number of soft modes, and analyze their e
The electronic properties of twisted bilayer graphene (TBG) can be dramatically different from those of a single graphene layer, in particular when the two layers are rotated relative to each other by a small angle. TBG has recently attracted a great
Magic-angle twisted bilayer graphene (MATBG) exhibits a range of correlated phenomena that originate from strong electron-electron interactions. These interactions make the Fermi surface highly susceptible to reconstruction when $ pm 1, pm 2, pm 3$ e
We show that the insulating states of magic-angle twisted bilayer graphene support a series of collective modes corresponding to local particle-hole excitations on triangular lattice sites. Our theory is based on a continuum model of the magic angle