ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhancement of the Raman Effect by Infrared Pumping

77   0   0.0 ( 0 )
 نشر من قبل Alexander Lisyansky
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a method for increasing the Raman scattering from an ensemble of molecules by up to four orders of magnitude. Our method requires an additional coherent source of IR radiation with the half-frequency of the Stokes shift. This radiation excites the molecule electronic subsystem that in turn, via Frohlich coupling, parametrically excites nuclear oscillations at a resonant frequency. This motion is coherent and leads to a boost of the Raman signal in comparison to the spontaneous signal because its intensity is proportional to the squared number of molecules in the illuminated volume.

قيم البحث

اقرأ أيضاً

We present an in-depth analysis of the experimental estimation of cross sections in Surface Enhanced Raman Scattering (SERS) by vibrational pumping. The paper highlights the advantages and disadvantages of the technique, pinpoints the main aspects an d limitations, and provides the underlying physical concepts to interpret the experimental results. Examples for several commonly used SERS probes are given, and a discussion on future possible developments is also presented.
A new optical pumping scheme is presented that uses incoherent Raman transitions to prepare a trapped Cesium atom in a specific Zeeman state within the 6S_{1/2}, F=3 hyperfine manifold. An important advantage of this scheme over existing optical pump ing schemes is that the atom can be prepared in any of the F=3 Zeeman states. We demonstrate the scheme in the context of cavity quantum electrodynamics, but the technique is equally applicable to a wide variety of atomic systems with hyperfine ground-state structure.
We demonstrate rotational and vibrational cooling of cesium dimers by optical pumping techniques. We use two laser sources exciting all the populated rovibrational states, except a target state that thus behaves like a dark state where molecules pile up thanks to absorption-spontaneous emission cycles. We are able to accumulate photoassociated cold Cs2 molecules in their absolute ground state (v = 0, J = 0) with up to 40% efficiency. Given its simplicity, the method could be extended to other molecules and molecular beams. It also opens up general perspectives in laser cooling the external degrees of freedom of molecules.
87 - Elena Kuchina , 2015
We experimentally investigated the characteristics of two-photon transmission resonances in Rb vapor cells with different amount of buffer gas under the conditions of steady-state coherent population trapping (CPT) and pulsed Raman-Ramsey (RR-) CPT i nterrogation scheme. We particularly focused on the influence of the Rb atoms diffusing in and out of the laser beam. We showed that this effect modifies the shape of both CPT and Raman-Ramsey resonances, as well as their projected performance for CPT clock applications. In particular we found that at moderate buffer gas pressures RR-CPT did not improved the projected atomic clock stability compare to the regular steady-state CPT resonance.
Surface enhanced Raman scattering (SERS) process results in a tremendous increase of Raman scattering cross section of molecules adsorbed to plasmonic metals and influenced by numerous physico-chemical factors such as geometry and optical properties of the metal surface, orientation of chemisorbed molecules and chemical environment. While SERS holds promise for single molecule sensitivity and optical sensing of DNA sequences, more detailed understanding of the rich physico-chemical interplay between various factors is needed to enhance predictive power of existing and future SERS-based DNA sensing platforms. In this work we report on experimental results indicating that SERS spectra of adsorbed single-stranded DNA (ssDNA) isomers depend on the order on which individual bases appear in the 3-base long ssDNA due to intra-molecular interaction between DNA bases. Furthermore, we experimentally demonstrate that the effect holds under more general conditions when the molecules dont experience chemical enhancement due to resonant charge transfer effect and also under standard Raman scattering without electromagnetic or chemical enhancements. Our numerical simulations qualitatively support the experimental findings and indicate that base permutation results in modification of both Raman and chemically enhanced Raman spectra.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا