ترغب بنشر مسار تعليمي؟ اضغط هنا

Black hole scaling relations of active and quiescent galaxies: Addressing selection effects and constraining virial factors

110   0   0.0 ( 0 )
 نشر من قبل Francesco Shankar Dr.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Francesco Shankar




اسأل ChatGPT حول البحث

Local samples of quiescent galaxies with dynamically measured black hole masses (Mbh) may suffer from an angular resolution-related selection effect, which could bias the observed scaling relations between Mbh and host galaxy properties away from the intrinsic relations. In particular, previous work has shown that the observed Mbh-Mstar (stellar mass) relation is more strongly biased than the Mbh-sigma (velocity dispersion) relation. Local samples of active galactic nuclei (AGN) do not suffer from this selection effect, as in these samples Mbh is estimated from megamasers and/or reverberation mapping-based techniques. With the exception of megamasers, Mbh-estimates in these AGN samples are proportional to a virial coefficient fvir. Direct modelling of the broad line region suggests that fvir~3.5. However, this results in a Mbh-Mstar relation for AGN which lies below and is steeper than the one observed for quiescent black hole samples. A similar though milder trend is seen for the Mbh-sigma relation. Matching the high-mass end of the Mbh-Mstar and Mbh-sigma relations observed in quiescent samples requires fvir~15 and fvir~7, respectively. On the other hand, fvir~3.5 yields Mbh-sigma and Mbh-Mstar relations for AGN which are remarkably consistent with the expected `intrinsic correlations for quiescent samples (i.e., once account has been made of the angular resolution-related selection effect), providing additional evidence that the sample of local quiescent black holes is biased. We also show that, as is the case for quiescent black holes, the Mbh-Mstar scaling relation of AGN is driven by velocity dispersion, thus providing additional key constraints to black hole-galaxy co-evolution models.



قيم البحث

اقرأ أيضاً

128 - Curtis J. Saxton 2014
We investigate the black hole (BH) scaling relation in galaxies using a model in which the galaxy halo and central BH are a self-gravitating sphere of dark matter (DM) with an isotropic, adiabatic equation of state. The equipotential where the escape velocity approaches the speed of light defines the horizon of the BH. We find that the BH mass ($m_bullet$) depends on the DM entropy, when the effective thermal degrees of freedom ($F$) are specified. Relations between BH and galaxy properties arise naturally, with the BH mass and DM velocity dispersion following $m_bulletproptosigma^{F/2}$ (for global mean density set by external cosmogony). Imposing observationally derived constraints on $F$ provides insight into the microphysics of DM. Given that DM velocities and stellar velocities are comparable, the empirical correlation between $m_bullet$ and stellar velocity dispersions $sigma_star$ implies that $7<F<10$. A link between $m_bullet$ and globular cluster properties also arises because the halo potential binds the globular cluster swarm at large radii. Interestingly, for $F>6$ the dense dark envelope surrounding the BH approaches the mean density of the BH itself, while the outer halo can show a nearly uniform kpc-scale core resembling those observed in galaxies.
113 - Francesco Shankar 2019
A supermassive black hole has been found at the centre of nearly every galaxy observed with sufficient sensitivity. The masses of these black holes are observed to increase with either the total mass or the mean (random) velocity of the stars in thei r host galaxies. The origin of these correlations remains elusive. Observational systematics and biases severely limit our knowledge of the local demography of supermassive black holes thus preventing accurate model comparisons and progress in this field. Here we show that the large-scale spatial distribution of local active galactic nuclei (AGN), believed to be accreting supermassive black holes, can constrain the shape and normalization of the black hole-stellar mass relation thus bypassing resolution-related observational biases. In turn, our results can set more stringent constraints on the so-called radiative efficiency, a fundamental parameter describing the inner physics of supermassive black holes that is closely linked to their spin, geometry, and ability to release energy. The mean value of the radiative efficiency can be estimated by comparing the average total luminous output of AGN with the relic mass density locked up in quiescent supermassive black holes at galaxy centres today. For currently accepted values of the AGN obscured fractions and bolometric corrections, our newest estimates of the local supermassive black hole mass density favour mean radiative efficiencies of ~10-20%, suggesting that the vast majority of supermassive black holes are spinning moderately to rapidly. With large-scale AGN surveys coming online, our novel methodology will enable even tighter constraints on the fundamental parameters that regulate the growth of supermassive black holes.
The sample of dwarf galaxies with measured central black hole masses $M$ and velocity dispersions $sigma$ has recently doubled, and gives a close fit to the extrapolation of the $M propto sigma$ relation for more massive galaxies. We argue that this is difficult to reconcile with suggestions that the scaling relations between galaxies and their central black holes are simply a statistical consequence of assembly through repeated mergers. This predicts black hole masses significantly larger than those observed in dwarf galaxies unless the initial distribution of uncorrelated seed black hole and stellar masses is confined to much smaller masses than earlier assumed. It also predicts a noticeable flattening of the $M propto sigma$ relation for dwarfs, to $M propto sigma^2$ compared with the observed $M propto sigma^4$. In contrast black hole feedback predicts that black hole masses tend towards a universal $M propto sigma^4$ relation in all galaxies, and correctly gives the properties of powerful outflows recently observed in dwarf galaxies. These considerations emphasize once again that the fundamental physical black-hole -- galaxy scaling relation is between $M$ and $sigma$. The relation of $M$ to the bulge mass $M_b$ is acausal, and depends on the quite independent connection between $M_b$ and $sigma$ set by stellar feedback.
The masses of supermassive black holes at the centres of local galaxies appear to be tightly correlated with the mass and velocity dispersions of their galactic hosts. However, the local Mbh-Mstar relation inferred from dynamically measured inactive black holes is up to an order-of-magnitude higher than some estimates from active black holes, and recent work suggests that this discrepancy arises from selection bias on the sample of dynamical black hole mass measurements. In this work we combine X-ray measurements of the mean black hole accretion luminosity as a function of stellar mass and redshift with empirical models of galaxy stellar mass growth, integrating over time to predict the evolving Mbh-Mstar relation. The implied relation is nearly independent of redshift, indicating that stellar and black hole masses grow, on average, at similar rates. Matching the de-biased local Mbh-Mstar relation requires a mean radiative efficiency ~0.15, in line with theoretical expectations for accretion onto spinning black holes. However, matching the raw observed relation for inactive black holes requires a mean radiative efficiency around 0.02, far below theoretical expectations. This result provides independent evidence for selection bias in dynamically estimated black hole masses, a conclusion that is robust to uncertainties in bolometric corrections, obscured active black hole fractions, and kinetic accretion efficiency. For our fiducial assumptions, they favour moderate-to-rapid spins of typical supermassive black holes, to achieve a mean radiative efficiency ~0.12-0.20. Our approach has similarities to the classic Soltan analysis, but by using galaxy-based data instead of integrated quantities we are able to focus on regimes where observational uncertainties are minimized.
85 - F. Ricci , F. Onori (2 2016
Accurately weigh the masses of SMBH in AGN is currently possible for only a small group of local and bright broad-line AGN through reverberation mapping (RM). Statistical demographic studies can be carried out considering the empirical scaling relati on between the size of the BLR and the AGN optical continuum luminosity. However, there are still biases against low-luminosity or reddened AGN, in which the rest-frame optical radiation can be severely absorbed/diluted by the host and the BLR emission lines could be hard to detect. Our purpose is to widen the applicability of virial-based SE relations to reliably measure the BH masses also for low-luminosity or intermediate/type 2 AGN that are missed by current methodology. We achieve this goal by calibrating virial relations based on unbiased quantities: the hard X-ray luminosities, in the 2-10 keV and 14-195 keV bands, that are less sensitive to galaxy contamination, and the FWHM of the most important rest-frame NIR and optical BLR emission lines. We built a sample of RM AGN having both X-ray luminosity and broad optical/NIR FWHM measurements available in order to calibrate new virial BH mass estimators. We found that the FWHM of the H$alpha$, H$beta$ and NIR lines (i.e. Pa$alpha$, Pa$beta$ and HeI$lambda$10830) all correlate each other having negligible or small offsets. This result allowed us to derive virial BH mass estimators based on either the 2-10 keV or 14-195 keV luminosity. We took also into account the recent determination of the different virial coefficients $f$ for pseudo and classical bulges. By splitting the sample according to the bulge type and adopting separate $f$ factors we found that our virial relations predict BH masses of AGN hosted in pseudobulges $sim$0.5 dex smaller than in classical bulges. Assuming the same average $f$ factor for both populations, a difference of $sim$0.2 dex is still found.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا