ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental realization of a quantum dot energy harvester

101   0   0.0 ( 0 )
 نشر من قبل Gulzat Jaliel
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate experimentally an autonomous nanoscale energy harvester that utilises the physics of resonant tunnelling quantum dots. Gate defined quantum dots on GaAs/AlGaAs high-electron-mobility transistors are placed on either side of a hot electron reservoir. The discrete energy levels of the quantum dots are tuned to be aligned with low energy electrons on one side and high energy electrons on the other side of the hot reservoir. The quantum dots thus act as energy filters and allow for the conversion of heat from the cavity into electrical power. This energy harvester device, measured at an estimated base temperature of 75 mK in a He3/He4 dilution refrigerator, can generate a thermal power of 0.13 fW when the temperature difference across each dot is about 67 mK.



قيم البحث

اقرأ أيضاً

We demonstrate the operation of a quantum spin pump based on cyclic radio-frequency excitation of a GaAs quantum dot, including the ability to pump pure spin without pumping charge. The device takes advantage of bidirectional mesoscopic fluctuations of pumped current, made spin-dependent by the application of an in-plane Zeeman field. Spin currents are measured by placing the pump in a focusing geometry with a spin-selective collector.
In this report we demonstrate a novel concept for a planar cavity polariton beam amplifier using non-resonant excitation. In contrast to resonant excitation schemes, background carriers are injected which form excitons, providing both gain and a repu lsive potential for a polariton condensate. Using an attractive potential environment induced by a locally elongated cavity layer, the repulsive potential of the injected background carriers is compensated and a significant amplification of polariton beams is achieved without beam distortion.
We present an experimental realization of a Coulomb blockade refrigerator (CBR) based on a single - electron transistor (SET). In the present structure, the SET island is interrupted by a superconducting inclusion to permit charge transport while pre venting heat flow. At certain values of the bias and gate voltages, the current through the SET cools one of the junctions. The measurements follow theoretical model down to about 80 mK, which was the base temperature of the current measurements. The observed cooling increases rapidly with decreasing temperature in agreement with the theory, reaching about 15 mK drop at the base temperature. CBR appears as a promising electronic cooler at temperatures well below 100 mK.
We present measurements of the rates for an electron to tunnel on and off a quantum dot, obtained using a quantum point contact charge sensor. The tunnel rates show exponential dependence on drain-source bias and plunger gate voltages. The tunneling process is shown to be elastic, and a model describing tunneling in terms of the dot energy relative to the height of the tunnel barrier quantitatively describes the measurements.
Topological insulators are new states of matter in which the topological phase originates from symmetry breaking. Recently, time-reversal invariant topological insulators were demonstrated for classical wave systems, such as acoustic systems, but lim ited by inter-pseudo-spin or inter-valley backscattering. This challenge can be effectively overcome via breaking the time-reversal symmetry. Here, we report the first experimental realization of acoustic topological insulators with nonzero Chern numbers, viz., acoustic Chern insulator (ACI), by introducing an angular-momentum-biased resonator array with broken Lorentz reciprocity. High Q-factor resonance is leveraged to reduce the required speed of rotation. Experimental results show that the ACI featured with a stable and uniform metafluid flow bias supports one-way nonreciprocal transport of sound at the boundaries, which is topologically immune to the defect-induced scatterings. Our work opens up opportunities for exploring unique observable topological phases and developing practical nonreciprocal devices in acoustics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا