ترغب بنشر مسار تعليمي؟ اضغط هنا

Attraction of indirect excitons in van der Waals heterostructures with three semiconducting layers

58   0   0.0 ( 0 )
 نشر من قبل Michael Sammon
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study a capacitor made of three monolayers of transition metal dichalcogenide (TMD) separated by hexagonal Boron Nitride (hBN). We assume that the structure is symmetric with respect to the central layer plane. The symmetry includes the contacts: if the central layer is contacted by the negative electrode, both external layers are contacted by the positive one. As a result a strong enough voltage $V$ induces electron-hole dipoles (indirect excitons) pointing towards one of the external layers. Antiparallel dipoles attract each other at large distances. Thus, the dipoles alternate in the central plane forming a 2D antiferroelectric with negative binding energy per dipole. The charging of a three-layer device is a first order transition, and we show that if $V_1$ is the critical voltage required to create a single electron-hole pair and charge this capacitor by $e$, the macroscopic charge $Q_c = eSn_c$ ($S$ is the device area) enters the three-layer capacitor at a smaller critical voltage $V_{c} < V_{1}$. In other words, the differential capacitance $C(V)$ is infinite at $V = V_{c}$. We also show that in a contact-less three-layer device, where the chemically different central layer has lower conduction and valence bands, optical excitation creates indirect excitons which attract each other, and therefore form antiferroelectric exciton droplets. Thus, the indirect exciton luminescence is red shifted compared to a two-layer device.



قيم البحث

اقرأ أيضاً

Indirect excitons (IXs) in van der Waals transition-metal dichalcogenide (TMD) heterostructures are characterized by a high binding energy making them stable at room temperature and giving the opportunity for exploring fundamental phenomena in excito nic systems and developing excitonic devices operational at high temperatures. We present the observation of IXs at room temperature in van der Waals TMD heterostructures based on monolayers of MoS$_2$ separated by atomically thin hexagonal boron nitride. The IXs realized in the TMD heterostructure have lifetimes orders of magnitude longer than lifetimes of direct excitons in single-layer TMD, and their energy is gate controlled.
In van der Waals (vdW) heterostructures formed by stacking two monolayer semiconductors, lattice mismatch or rotational misalignment introduces an in-plane moire superlattice. While it is widely recognized that a moire superlattice can modulate the e lectronic band structure and lead to novel transport properties including unconventional superconductivity and insulating behavior driven by correlations, its influence on optical properties has not been investigated experimentally. We present spectroscopic evidence that interlayer excitons are confined by the moire potential in a high-quality MoSe2/WSe2 heterobilayer with small rotational twist. A series of interlayer exciton resonances with either positive or negative circularly polarized emission is observed in photoluminescence, consistent with multiple exciton states confined within the moire potential. The recombination dynamics and temperature dependence of these interlayer exciton resonances are consistent with this interpretation. These results demonstrate the feasibility of engineering artificial excitonic crystals using vdW heterostructures for nanophotonics and quantum information applications.
Monolayers of transition metal dichalcogenides (TMDCs) feature exceptional optical properties that are dominated by excitons, tightly bound electron-hole pairs. Forming van der Waals heterostructures by deterministically stacking individual monolayer s allows to tune various properties via choice of materials and relative orientation of the layers. In these structures, a new type of exciton emerges, where electron and hole are spatially separated. These interlayer excitons allow exploration of many-body quantum phenomena and are ideally suited for valleytronic applications. Mostly, a basic model of fully spatially-separated electron and hole stemming from the $K$ valleys of the monolayer Brillouin zones is applied to describe such excitons. Here, we combine photoluminescence spectroscopy and first principle calculations to expand the concept of interlayer excitons. We identify a partially charge-separated electron-hole pair in MoS$_2$/WSe$_2$ heterostructures residing at the $Gamma$ and $K$ valleys. We control the emission energy of this new type of momentum-space indirect, yet strongly-bound exciton by variation of the relative orientation of the layers. These findings represent a crucial step towards the understanding and control of excitonic effects in TMDC heterostructures and devices.
We report an experimental study of excitons in a double quantum well van der Waals heterostructure made of atomically thin layers of Mo* and hexagonal boron nitride (hBN). The emission of neutral and charged excitons is controlled by gate voltage, te mperature, and both the helicity and the power of optical excitation.
Stacking monolayers of transition metal dichalcogenides into a heterostructure with a finite twist-angle gives rise to artificial moire superlattices with a tunable periodicity. As a consequence, excitons experience a periodic potential, which can be exploited to tailor optoelectronic properties of these materials. While recent experimental studies have confirmed twist-angle dependent optical spectra, the microscopic origin of moire exciton resonances has not been fully clarified yet. Here, we combine first principle calculations with the excitonic density matrix formalism to study transitions between different moire exciton phases and their impact on optical properties of the twisted MoSe$_2$/WSe$_2$ heterostructure. At angles smaller than 2$^{circ}$ we find flat, moire trapped states for inter- and intralayer excitons. This moire exciton phase drastically changes into completely delocalized states already at 3$^{circ}$. We predict a linear and quadratic twist-angle dependence of excitonic resonances for the moire-trapped and delocalized exciton phase, respectively. Our work provides microscopic insights opening the possibility to tailor moire exciton phases in van der Waals superlattices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا