ﻻ يوجد ملخص باللغة العربية
The physical characteristics and evolution of a large-scale helium plume are examined through a series of numerical simulations with increasing physical resolution using adaptive mesh refinement (AMR). The five simulations each model a 1~m diameter circular helium plume exiting into a (4~m)$^3$ domain, and differ solely with respect to the smallest scales resolved using the AMR, spanning resolutions from 15.6~mm down to 0.976~mm. As the physical resolution becomes finer, the helium-air shear layer and subsequent Kelvin-Helmholtz instability are better resolved, leading to a shift in the observed plume structure and dynamics. In particular, a critical resolution is found between 3.91~mm and 1.95~mm, below which the mean statistics and frequency content of the plume are altered by the development of a Rayleigh-Taylor instability near the centerline in close proximity to the base of the plume. This shift corresponds to a plume puffing frequency that is slightly higher than would be predicted using empirical relationships developed for buoyant jets. Ultimately, the high-fidelity simulations performed here are intended as a new validation dataset for the development of subgrid-scale models used in large eddy simulations of real-world buoyancy-driven flows.
Wildland fires are complex multi-physics problems that span wide spatial scale ranges. Capturing this complexity in computationally affordable numerical simulations for process studies and outer-loop techniques (e.g., optimization and uncertainty qua
We have explored the evolution of gas distributions from cosmological simulations carried out using the RAMSES adaptive mesh refinement (AMR) code, to explore the effects of resolution on cosmological hydrodynamical simulations. It is vital to unders
In this work, we introduce GRChombo: a new numerical relativity code which incorporates full adaptive mesh refinement (AMR) using block structured Berger-Rigoutsos grid generation. The code supports non-trivial many-boxes-in-many-boxes mesh hierarchi
To date, fully cosmological hydrodynamic disk simulations to redshift zero have only been undertaken with particle-based codes, such as GADGET, Gasoline, or GCD+. In light of the (supposed) limitations of traditional implementations of smoothed parti
In this paper we present a fourth-order in space and time block-structured adaptive mesh refinement algorithm for the compressible multicomponent reacting Navier-Stokes equations. The algorithm uses a finite volume approach that incorporates a fourth