ترغب بنشر مسار تعليمي؟ اضغط هنا

Dependence of Convective Boundary Mixing on Boundary Properties and Turbulence Strength

62   0   0.0 ( 0 )
 نشر من قبل Andrea Cristini
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Convective boundary mixing is one of the major uncertainties in stellar evolution. In order to study its dependence on boundary properties and turbulence strength in a controlled way, we computed a series of 3D hydrodynamical simulations of stellar convection during carbon burning with a varying boosting factor of the driving luminosity. Our 3D implicit large eddy simulations were computed with the PROMPI code. We performed a mean field analysis of the simulations within the Reynolds-averaged Navier-Stokes framework. Both the vertical RMS velocity within the convective region and the bulk Richardson number of the boundaries are found to scale with the driving luminosity as expected from theory. The positions of the convective boundaries were estimated through the composition profiles across them, and the strength of convective boundary mixing was determined by analysing the boundaries within the framework of the entrainment law. We find that the entrainment is approximately inversely proportional to the bulk Richardson number. Although the entrainment law does not encompass all the processes occurring at boundaries, our results support the use of the entrainment law to describe convective boundary mixing in 1D models, at least for the advanced phases. The next steps and challenges ahead are also discussed.

قيم البحث

اقرأ أيضاً

Convective boundary mixing (CBM) is ubiquitous in stellar evolution. It is a necessary ingredient in the models in order to match observational constraints from clusters, binaries and single stars alike. We compute `effective overshoot measures that reflect the extent of mixing and which can differ significantly from the input overshoot values set in the stellar evolution codes. We use constraints from pressure modes to infer the CBM properties of Kepler and CoRoT main-sequence and subgiant oscillators, as well as in two radial velocity targets (Procyon A and $alpha$ Cen A). Collectively these targets allow us to identify how measurement precision, stellar spectral type, and overshoot implementation impact the asteroseismic solution. With these new measures we find that the `effective overshoot for most stars is in line with physical expectations and calibrations from binaries and clusters. However, two F-stars in the CoRoT field (HD 49933 and HD 181906) still necessitate high overshoot in the models. Due to short mode lifetimes, mode identification can be difficult in these stars. We demonstrate that an incongruence between the radial and non-radial modes drives the asteroseismic solution to extreme structures with highly-efficient CBM as an inevitable outcome. Understanding the cause of seemingly anomalous physics for such stars is vital for inferring accurate stellar parameters from TESS data with comparable timeseries length.
The $s$-process nucleosynthesis in Asymptotic Giant Branch (AGB) stars depends on the modeling of convective boundaries. We present models and s-process simulations that adopt a treatment of convective boundaries based on the results of hydrodynamic simulations and on the theory of mixing due to gravity waves in the vicinity of convective boundaries. Hydrodynamics simulations suggest the presence of convective boundary mixing (CBM) at the bottom of the thermal pulse-driven convective zone. Similarly, convection-induced mixing processes are proposed for the mixing below the convective envelope during third dredge-up where the 13C pocket for the s process in AGB stars forms. In this work we apply a CBM model motivated by simulations and theory to models with initial mass $M = 2$ and $M = 3M_odot$, and with initial metal content Z = 0.01 and Z = 0.02. As reported previously, the He-intershell abundance of 12C and 16O are increased by CBM at the bottom of pulse-driven convection zone. This mixing is affecting the $^{22}Ne(alpha,n)^{25}Mg$ activation and the s-process effciency in the 13C-pocket. In our model CBM at the bottom of the convective envelope during the third dredgeup represents gravity wave mixing. We take further into account that hydrodynamic simulations indicate a declining mixing efficiency already about a pressure scale height from the convective boundaries, compared to mixing-length theory. We obtain the formation of the 13C-pocket with a mass of $approx 10^{-4}M_odot$. The final $s$-process abundances are characterized by 0.36 < [s=Fe] < 0.78 and the heavy-to-light s-process ratio is 0.23 < [hs=ls] < 0.45. Finally, we compare our results with stellar observations, pre-solar grain measurements and previous work.
Aims: We investigate from a theoretical perspective if space asteroseismology can be used to distinguish between different thermal structures and shapes of the near-core mixing profiles for different types of coherent oscillation modes in massive sta rs with convective cores, and if this capacity depends on the evolutionary stage of the models along the main sequence. Methods: We compute 1D stellar structure and evolution models for four different prescriptions of the mixing and temperature gradient in the near-core region. Their effect on the frequencies of dipole prograde gravity modes in both Slowly Pulsating B and $beta$ Cep stars is investigated, as well as for pressure modes in $beta$ Cep stars. Results: A comparison between the mode frequencies of the different models at various stages during the main sequence evolution reveals that they are more sensitive to a change in temperature gradient than to the exact shape of the mixing profile in the near-core region. Depending on the duration of the observed light curve, one can distinguish between either just the temperature gradient, or also between the shapes of the mixing coefficient. The relative frequency differences are in general larger for more evolved models, and are largest for the higher-frequency pressure modes in $beta$ Cep stars. Conclusions:In order to unravel the core boundary mixing and thermal structure of the near-core region, one must have asteroseismic masses and radii with $sim 1%$ relative precision for hundreds of stars.
It was recently reported that segregation of Zr to grain boundaries (GB) in nanocrystalline Cu can lead to the formation of disordered intergranular films [1,2]. In this study we employ atomistic computer simulations to study how the formation of the se films affects the dislocation nucleation from the GBs. We found that full disorder of the grain boundary structure leads to the suppression of dislocation emission and significant increase of the yield stress. Depending on the solute concentration and heat-treatment, however, a partial disorder may also occur and this aids dislocation nucleation rather than suppressing it, resulting in elimination of the strengthening effect.
The Gaia M-dwarf gap is a significant under-density of stars observed near $M_G = 10.2$ in a color-magnitude diagram for stars within 200 pc of the Sun. It has been proposed that the gap is the manifestation of structural instabilities within stellar interiors due to non-equilibrium $^{3}$He fusion prior to some stars becoming fully convective. To test this hypothesis, we use Dartmouth stellar evolution models, MARCS model atmospheres, and simple stellar population synthesis to create synthetic $M_G$-($G_{rm BP} - G_{rm RP})$ color-magnitude diagrams. We confirm that the proposed $^{3}$He instability is responsible for the appearance of the M-dwarf gap. Our synthetic gap shows qualitatively similar features to the observed gap including: its vertical extent in $M_G$, its slope in the color-magnitude diagram, and its relative prominence at bluer colors as compared to redder colors. Furthermore, corresponding over-densities of stars above the gap are reproduced by the models. While qualitatively similar, the synthetic gap is approximately 0.2 magnitudes bluer and, accounting for this color offset, 0.16 magnitudes brighter than the observed gap. Our results reveal that the Gaia M dwarf gap is sensitive to conditions within cores of M dwarf stars, making the gap a powerful tool for testing the physics of M dwarf stars and potentially using M dwarfs to understand the local star formation history.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا