ﻻ يوجد ملخص باللغة العربية
We address quantum state engineering of single- and two-mode states by means of non-deterministic noiseless linear amplifiers (NLAs) acting on Gaussian states. In particular, we show that NLAs provide an effective scheme to generate highly non-Gaussian and non-classical states. Additionally, we show that the amplification of a two-mode squeezed vacuum state (twin-beam) may highly increase entanglement.
We address the characterization of the gain parameter of a non-deterministic noiseless linear amplifier (NLA) and compare the performances of different estimation strategies using tools from quantum estimation theory. At first, we show that, contrary
A universal deterministic noiseless quantum amplifier has been shown to be impossible. However, probabilistic noiseless amplification of a certain set of states is physically permissible. Regarding quantum state amplification as quantum state transfo
The idea of signal amplification is ubiquitous in the control of physical systems, and the ultimate performance limit of amplifiers is set by quantum physics. Increasing the amplitude of an unknown quantum optical field, or more generally any harmoni
Quantum mechanics imposes that any amplifier that works independently on the phase of the input signal has to introduce some excess noise. The impossibility of such a noiseless amplifier is rooted into unitarity and linearity of quantum evolution. A
We suggest and investigate a scheme for non-deterministic noiseless linear amplification of coherent states using successive photon addition, $(hat a^{dagger})^2$, where $hat a^dagger$ is the photon creation operator. We compare it with a previous pr