ترغب بنشر مسار تعليمي؟ اضغط هنا

Higher superconducting transition temperature by breaking the universal pressure relation

86   0   0.0 ( 0 )
 نشر من قبل C. W. Chu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Liangzi Deng




اسأل ChatGPT حول البحث

By investigating the bulk superconducting state via dc magnetization measurements, we have discovered a common resurgence of the superconductive transition temperatures (Tcs) of the monolayer Bi2Sr2CuO6+{delta} (Bi2201) and bilayer Bi2Sr2CaCu2O8+{delta} (Bi2212) to beyond the maximum Tcs (Tc-maxs) predicted by the universal relation between Tc and doping (p) or pressure (P) at higher pressures. The Tc of under-doped Bi2201 initially increases from 9.6 K at ambient to a peak at ~ 23 K at ~ 26 GPa and then drops as expected from the universal Tc-P relation. However, at pressures above ~ 40 GPa, Tc rises rapidly without any sign of saturation up to ~ 30 K at ~ 51 GPa. Similarly, the Tc for the slightly overdoped Bi2212 increases after passing a broad valley between 20-36 GPa and reaches ~ 90 K without any sign of saturation at ~ 56 GPa. We have therefore attributed this Tc-resurgence to a possible pressure-induced electronic transition in the cuprate compounds due to a charge transfer between the Cu 3d_(x^2-y^2 ) and the O 2p bands projected from a hybrid bonding state, leading to an increase of the density of states at the Fermi level, in agreement with our density functional theory calculations. Similar Tc-P behavior has also been reported in the trilayer Br2Sr2Ca2Cu3O10+{delta} (Bi2223). These observations suggest that higher Tcs than those previously reported for the layered cuprate high temperature superconductors can be achieved by breaking away from the universal Tc-P relation through the application of higher pressures.



قيم البحث

اقرأ أيضاً

The pressure dependence of superconducting transition temperature $T_{rm c}$ has been investigated through the DC magnetic measurements for FeSe$_{0.8}$ and FeSe$_{1.0}$. For both samples, with increasing pressure $P$, the $T_{rm c}$$-$$P$ curve exhi bits a two-step increase, showing a local maximum of $sim$11 K at $P$$sim$1.0 GPa and a rapid increase with an extremely large pressure coefficient for $P$$>$1.5 GPa. $T_{rm c}$ saturates at $sim$25 K (21 K) in FeSe$_{1.0}$ (FeSe$_{0.8}$) for $P$$>$3 GPa. A rapid decrease in superconducting volume fraction is observed with an increase in $T_{rm c}$ above 1.5 GPa, suggesting the presence of electronic inhomogeneity.
Scaling laws express a systematic and universal simplicity among complex systems in nature. For example, such laws are of enormous significance in biology. Scaling relations are also important in the physical sciences. The seminal 1986 discovery of h igh transition-temperature (high-T_c) superconductivity in cuprate materials has sparked an intensive investigation of these and related complex oxides, yet the mechanism for superconductivity is still not agreed upon. In addition, no universal scaling law involving such fundamental properties as T_c and the superfluid density rho_s, a quantity indicative of the number of charge carriers in the superconducting state, has been discovered. Here we demonstrate that the scaling relation rho_s propto sigma_{dc} T_c, where the conductivity sigma_{dc} characterizes the unidirectional, constant flow of electric charge carriers just above T_c, universally holds for a wide variety of materials and doping levels. This surprising unifying observation is likely to have important consequences for theories of high-T_c superconductivity.
Thin superconducting films form a unique platform for geometrically-confined, strongly-interacting electrons. They allow an inherent competition between disorder and superconductivity, which in turn enables the intriguing superconducting-to-insulator transition and believed to facilitate the comprehension of high-Tc superconductivity. Furthermore, understanding thin film superconductivity is technologically essential e.g. for photo-detectors, and quantum-computers. Consequently, the absence of an established universal relationships between critical temperature ($T_c$), film thickness ($d$) and sheet resistance ($R_s$) hinders both our understanding of the onset of the superconductivity and the development of miniaturised superconducting devices. We report that in thin films, superconductivity scales as $d^.$$T_c(R_s)$. We demonstrated this scaling by analysing the data published over the past 46 years for different materials (and facilitated this database for further analysis). Moreover, we experimentally confirmed the discovered scaling for NbN films, quantified it with a power law, explored its possible origin and demonstrated its usefulness for superconducting film-based devices.
We have studied the evolution, with hydrostatic pressure, of the recently discovered superconductivity in the graphite intercalation compounds C$_6$Yb and C$_6$Ca. We present pressure-temperature phase diagrams, for both superconductors, established by electrical transport and magnetization measurements. In the range 0-1.2 GPa the superconducting transition temperature increases linearly with pressure in both materials with $dT_c/dP = +0.39 K/GPa$ and $dT_c/dP = +0.50 K/GPa$ for C$_6$Yb and C$_6$Ca respectively. The transition temperature in C$_6$Yb, which has beenmeasured up to 2.3 GPa, reaches a peak at around 1.8 GPa and then starts to drop. We also discuss how this pressure dependence may be explained within a plasmon pairing mechanism.
166 - S. K. Goh , H. C. Chang , P. Reiss 2014
We report the pressure dependence of the superconducting transition temperature, $T_c$, in TlNi$_2$Se$_{2-x}$S$_x$ detected via the AC susceptibility method. The pressure-temperature phase diagram constructed for TlNi$_{2}$Se$_{2}$, TlNi$_{2}$S$_{2}$ and TlNi$_{2}$SeS exhibits two unexpected features: (a) a sudden collapse of the superconducting state at moderate pressure for all three compositions and (b) a dome-shaped pressure dependence of $T_c$ for TlNi$_{2}$SeS. These results point to the nontrivial role of S substitution and its subtle interplay with applied pressure, as well as novel superconducting properties of the TlNi$_2$Se$_{2-x}$S$_x$ system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا