ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures

99   0   0.0 ( 0 )
 نشر من قبل Feng Miao
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Initiating impact ionization of avalanche breakdown essentially requires applying a high electric field in a long active region, hampering carrier-multiplication with high gain, low bias and superior noise performance. Here we report the observation of ballistic avalanche phenomena in sub-MFP scaled vertical indium selenide (InSe)/black phosphorus (BP) heterostructures. The heterojunction is engineered to avalanche photodetectors (APD) and impact ionization transistors, demonstrating ultra-sensitive mid-IR light detection (4 {mu}m wavelength) and ultra-steep subthreshold swing, respectively. These devices show an extremely low avalanche threshold (<1 volt), excellent low noise figures and distinctive density spectral shape. Further transport measurement evidences the breakdown originals from a ballistic avalanche phenomenon, where the sub-MFP BP channel enables both electrons and holes to impact-ionize the lattice and abruptly amplify the current without scattering from the obstacles in a deterministic nature. Our results shed light on the development of advanced photodetectors and efficiently facilitating carriers on the nanoscale.

قيم البحث

اقرأ أيضاً

Heterostructures of 2D van der Waals semiconductor materials offer a diverse playground for exploring fundamental physics and potential device applications. In InSe/GaSe heterostructures formed by sequential mechanical exfoliation and stacking of 2D monochalcogenides InSe and GaSe, we observe charge transfer between InSe and GaSe due to the 2D van der Waals interface formation and a strong hysteresis effect in the electron transport through the InSe layer when a gate voltage is applied through the GaSe layer. A gate voltage dependant conductance decay rate is also observed. We relate these observations to the gate voltage dependant dynamical charge transfer between InSe and GaSe layers.
In hybrid lead halide perovskites, the coupling between photogenerated charges and the ionic degrees of freedom plays a crucial role in defining the intrinsic limit of carrier mobility and lifetime. However, direct investigation of this fundamental i nteraction remains challenging because its relevant dynamics occur on ultrashort spatial and ultrafast temporal scales. Here, we unveil the coupled electron-lattice dynamics of a CH3NH3PbI3 single crystal upon intense photoexcitation through a unique combination of ultrafast electron diffraction, time-resolved photoelectron spectroscopy, and time-dependent ab initio calculations. We observe the structural signature of a hot-phonon bottleneck effect that prevents rapid carrier relaxation, and we uncover a phonon avalanche mechanism responsible for breaking the bottleneck. The avalanche involves a collective emission of low-energy phonons - mainly associated with the organic sub-lattice - that proceeds in a regenerative manner and correlates with the accumulation and confinement of photocarriers at the crystal surface. Our results indicate that in hybrid perovskites carrier transport and spatial confinement are key to controlling the electron-phonon interaction and their rational engineering is relevant for future applications in optoelectronic devices.
The valley degree of freedom in two-dimensional (2D) crystals recently emerged as a novel information carrier in addition to spin and charge. The intrinsic valley lifetime in 2D transition metal dichalcoginides (TMD) is expected to be remarkably long due to the unique spin-valley locking behavior, where the inter-valley scattering of electron requires simultaneously a large momentum transfer to the opposite valley and a flip of the electron spin. The experimentally observed valley lifetime in 2D TMDs, however, has been limited to tens of nanoseconds so far. Here we report efficient generation of microsecond-long lived valley polarization in WSe2/MoS2 heterostructures by exploiting the ultrafast charge transfer processes in the heterostructure that efficiently creates resident holes in the WSe2 layer. These valley-polarized holes exhibit near unity valley polarization and ultralong valley lifetime: we observe a valley-polarized hole population lifetime of over 1 us, and a valley depolarization lifetime (i.e. inter-valley scattering lifetime) over 40 us at 10 Kelvin. The near-perfect generation of valley-polarized holes in TMD heterostructures with ultralong valley lifetime, orders of magnitude longer than previous results, opens up new opportunities for novel valleytronics and spintronics applications.
Van der Waals heterostructures have recently been identified as providing many opportunities to create new two-dimensional materials, and in particular to produce materials with topologically interesting states. Here we show that it is possible to cr eate such heterostructures with multiple topological phases in a single nanoscale island. We discuss their growth within the framework of diffusion-limited aggregation, the formation of moire patterns due to the differing crystallographies of the materials comprising the heterostructure, and the potential to engineer both the electronic structure as well as local variations of topological order. In particular we show that it is possible to build islands which include both the hexagonal $beta$- and rectangular $alpha$-forms of antimonene, on top of the topological insulator $alpha$-bismuthene. This is the first experimental realisation of $alpha$-antimonene, and we show that it is a topologically non-trivial material in the quantum spin Hall class.
538 - Yuan Liu , Jiming Sheng , Hao Wu 2015
Graphene/silicon heterostructures have attracted tremendous interest as a new platform for diverse electronic and photonic devices such as barristors, solar cells, optical modulators, and chemical sensors. The studies to date largely focus on junctio ns between graphene and lightly-doped silicon, where a Schottky barrier is believed to dominate the carrier transport process. Here we report a systematic investigation of carrier transport across the heterojunctions formed between graphene and highly-doped silicon. By varying the silicon doping level and the measurement temperature, we show that the carrier transport across the graphene/p++-Si heterojunction is dominated by tunneling effect through the native oxide. We further demonstrate that the tunneling current can be effectively modulated by the external gate electrical field, resulting in a vertical tunneling transistor. Benefited from the large density of states of highly doped silicon, our tunneling transistors can deliver a current density over 20 A/cm2, about two orders of magnitude higher than previous graphene/insulator/graphene tunneling transistor at the same on/off ratio.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا