ﻻ يوجد ملخص باللغة العربية
Metasurface, a kind of two-dimensional structured medium, represents a novel platform to manipulate the propagation of light at subwavelength scale. In linear optical regime, many interesting topics such as planar metalens, metasurface optical holography and so on have been widely investigated. Recently, metasurfaces go into nonlinear optical regime. While it is recognized that the local symmetry of the meta-atoms plays vital roles, its relationship with global symmetry of the nonlinear metasurfaces remains elusive. According to the Penrose tiling and the newly proposed hexagonal quasicrystalline tiling, here we designed and fabricated the nonlinear optical quasicrystal metasurfaces based on the geometric phase controlled plasmonic meta-atoms with local rotational symmetry. The second harmonic waves will be determined by both the tiling schemes of quasicrystal metasurfaces and the local symmetry of meta-atoms they consist of. The proposed concept opens new routes for designing nonlinear metasurface crystals with desired optical functionalities.
We introduce the concept of nonlinear graphene metasurfaces employing the controllable interaction between a graphene layer and a planar metamaterial. Such hybrid metasurfaces support two types of subradiant resonant modes, asymmetric modes of struct
Subwavelength dielectric resonators assembled into metasurfaces have become versatile tools to miniaturise optical components towards the nanoscale. An important class of such functionalities is associated with asymmetries in both generation and prop
The optical spin Hall effect (OSHE) is a transport phenomenon of exciton polaritons in semiconductor microcavities, caused by the polaritonic spin-orbit interaction, that leads to the formation of spin textures. In the semiconductor cavity, the physi
Infrared imaging is a crucial technique in a multitude of applications, including night vision, autonomous vehicles navigation, optical tomography, and food quality control. Conventional infrared imaging technologies, however, require the use of mate
We propose a tunable coherent perfect absorber based on ultrathin nonlinear metasurfaces. The nonlinear metasurface is made of plasmonic nanoantennas coupled to an epsilon-near-zero material with a large optical nonlinearity. The coherent perfect abs