ﻻ يوجد ملخص باللغة العربية
The low-frequency rotating plasma instability (spoke) in the ISCT200 thruster operating in the wall-less configuration was simulated with a 3 dimensional PIC MCC code. In the simulations an m = 1 spoke rotating with a velocity of 6.5 km/s in the ExB direction was observed. The rotating electron density structure in the spoke is accompanied by a strongly depleted region of the neutral gas, which clearly shows that the spoke instability is of an ionization nature, similar to the axial breathing mode oscillations. In the simulation the electron cross-field transport through the spoke core was caused by diffusion in the high-frequency (4-10 MHz), short-scale (3 mm) electric field oscillations. These short-scale oscillations play a crucial role in the thruster discharge as over 70% of the electron current to the anode originates from the spoke core. The rest of the current originates from the spoke front where the electron cross-field transport toward the anode is due to the ExB drift in the spoke macroscopic azimuthal electric field.
Along with crossed electric and magnetic fields in a Hall thruster, a radial component of electric field is generated that takes ions toward the walls, which causes sputtering and produces dust contamination in the thruster plasma. Considering negati
New class instabilities is identified in Hall plasmas in configurations with open magnetic field lines. It is shown that sheath resistivity results in a robust instability driven by the equilibrium electric field. It is conjectured that these instabi
Magnetic fields of planets, stars and galaxies are generated by self-excitation in moving electrically conducting fluids. Once produced, magnetic fields can play an active role in cosmic structure formation by destabilizing rotational flows that woul
A two-fluid flowing plasma model is applied to describe the plasma rotation and resulted instability evolution in magnetically enhanced vacuum arc thruster (MEVAT). Typical experimental parameters are employed, including plasma density, equilibrium m
A direct numerical simulation of many interacting ions in a Penning trap with a rotating wall is presented. The ion dynamics is modelled classically. Both axial and planar Doppler laser cooling are modeled using stochastic momentum impulses based on