ﻻ يوجد ملخص باللغة العربية
Recent numerical studies on glassy systems provide evidences for a population of non-Goldstone modes (NGMs) in the low-frequency spectrum of the vibrational density of states $D(omega)$. Similarly to Goldstone modes (GMs), i. e., phonons in solids, NGMs are soft low-energy excitations. However, differently from GMs, NGMs are localized excitations. Here we first show that the parental temperature $T^*$ modifies the GM/NGM ratio in $D(omega)$. In particular, the phonon attenuation is reflected in a parental temperature dependency of the exponent $s(T^*)$ in the low-frequency power law $D(omega) sim omega^{s(T^*)}$, with $2 leq s(T^*) leq 4 $. Secondly, by comparing $s(T^*)$ with $s(p)$, i. e., the same quantity obtained by pinning mttp{a} $p$ particle fraction, we suggest that $s(T^*)$ reflects the presence of dynamical heterogeneous regions of size $xi^3 propto p$. Finally, we provide an estimate of $xi$ as a function of $T^*$, finding a mild power law divergence, $xi sim (T^* - T_d)^{-alpha/3}$, with $T_d$ the dynamical crossover temperature and $alpha$ falling in the range $alpha in [0.8,1.0]$.
We show that the low-frequency regime of the density of states of structural glass formers is crucially sensitive to the stress-ensemble from which the configurations are sampled. Specifically, in two dimensions, an exactly isotropic ensemble with ze
We investigate the origin of the breakdown of the Stokes-Einstein relation (SER) between diffusivity and viscosity in undercooled melts. A binary Lennard-Jones system, as a model for a metallic melt, is studied by molecular dynamics. A weak breakdown
In this note we revisit the Kovacs effect, concerning the way in which the volume of a glass-forming liquid, which has been driven out of equilibrium, changes with time while the system evolves towards a metastable state. The theoret- ical explanatio
Using molecular dynamics simulation, we have calculated the pressure dependence of the diffusion constant in a binary Lennard-Jones Glass. We observe four temperature regimes. The apparent activation volume drops from high values in the hot liquid to
We present a numerical investigation of the density fluctuations in a model glass under cyclic shear deformation. At low amplitude of shear, below yielding, the system reaches a steady absorbing state in which density fluctuations are suppressed reve