ترغب بنشر مسار تعليمي؟ اضغط هنا

Glass-like features of crystalline solids in the quantum critical regime

88   0   0.0 ( 0 )
 نشر من قبل Yui Ishii
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

There has been growing interest in structural quantum phase transitions and quantum fluctuations of phonons in the research area of condensed matter physics. Here, we report the observation of glass-like features in the lattice heat capacity of a stuffed tridymite-type crystal, Ba1-xSrxAl2O4, a candidate compound of quantum paraelectrics. Substitutional chemical suppression of the ferroelectric phase transition temperature (TC) of Ba1-xSrxAl2O4 results in the disappearance of the TC at x=0.07. For the compositional window of x=0.2-0.5, the lattice heat capacity is enhanced below approximately 10 K and diverges from the T3-scaling law below 2.5 K. Synchrotron X-ray diffraction experiments on single crystals reveal the weakly correlated disorder in the crystal structure that survives down to low temperature; this disorder is responsible for the observed excess heat capacity. These features can be considered one of the manifestations of structural quantum fluctuations.

قيم البحث

اقرأ أيضاً

It is textbookly regarded that phonons, i.e., an energy quantum of propagating lattice waves, are the main heat carriers in perfect crystals. As a result, in many crystals, e.g., bulk silicon, the temperature-dependent thermal conductivity shows the classical 1/T relationship because of the dominant Umklapp phonon-phonon scattering in the systems. However, the thermal conductivity of many crystalline metal-organic frameworks is very low and shows no, a weakly negative and even a weakly positive temperature dependence (glass-like thermal conductivity). It has been in debate whether the thermal transport can be still described by phonons in metal-organic frameworks. Here, by studying two typical systems, i.e., crystal zeolitic imidazolate framework-4 (cZIF-4) and crystal zeolitic imidazolate framework-62 (c-ZIF62), we prove that the ultralow thermal conductivity in metal-organic frameworks is resulting from the strong phonon intrinsic structure scattering due to the large mass difference and the large cavity between Zn and N atoms. Our mean free path spectrum analysis shows that both propagating and non-propagating anharmonic vibrational modes exist in the systems, and contribute largely to the thermal conductivity. The corresponding weakly negative or positive temperature dependence of the thermal conductivity is stemming from the competition between the propagating and non-propagating anharmonic vibrational modes. Our study here provides a fundamental understanding of thermal transport in metal-organic frameworks and will guide the design of the thermal-related applications using metal-organic frameworks, e.g., inflammable gas storage, chemical catalysis, solar thermal conversion and so on.
The spin glass behavior of Y2Mo2O7 has puzzled physicists for nearly three decades. Free of bulk disorder within the resolution of powder diffraction methods, it is thought that this material is a rare realization of a spin glass resulting from weak disorder such as bond disorder or local lattice distortions. Here, we report on the single crystal growth of Y2Mo2O7. Using neutron scattering, we present unique isotropic magnetic diffuse scattering arising beneath the spin glass transition despite having a well-ordered structure at the bulk level. Despite our attempts to model the diffuse scattering using a computationally exhaustive search of a class of simple spin Hamiltonians, we were unable to replicate the experimentally observed energy-integrated (diffuse) neutron scattering. A T^2-temperature dependence in the heat capacity and density functional theory calculations hint at significant frozen degeneracy in both the spin and orbital degrees of freedom resulting from spin-orbital coupling (Kugel-Khomskii type) and random fluctuations in the Mo environment at the local level.
The chemical bond is one of the most powerful, yet controversial concepts in chemistry, explaining property trends in solids. Recently, a novel type of chemical bonding has been identified in several higher chalcogenides, characterized by a unique pr operty portfolio, unconventional bond breaking and sharing of about one electron between adjacent atoms. Metavalent bonding is a fundamental type of bonding besides covalent, ionic and metallic bonding, raising the pertinent question, if there is a well-defined transition between metavalent and covalent bonding. For three different pseudo-binary lines, namely GeTe1-xSex, Sb2Te3(1-x)Se3x and Bi2-2xSb2xSe3, a sudden drop in several properties, including the optical dielectric constant, the Born effective charge, the electrical conductivity as well as the bond breaking is observed once a critical Se or Sb concentration is reached. This finding provides a blueprint to explore the impact of metavalent bonding on attractive properties utilized in phase change materials and thermoelectrics.
Typical device architectures in polymer-based optoelectronic devices, such as field effect transistors organic light emitting diodes and photovoltaic cells include sub-100 nm semiconducting polymer thin-film active layers, whose microstructure is lik ely to be subject to finite-size effects. The aim of this study was to investigate effect of the two-dimensional spatial confinement on the internal structure of the semiconducting polymer poly(9,9-dioctylfluorene) (PFO). PFO melts were confined inside the cylindrical nanopores of anodic aluminium oxide (AAO) templates and crystallized via two crystallization strategies, namely, in the presence or in the absence of a surface bulk reservoir located at the template surface. We show that highly textured semiconducting nanowires with tuneable crystal orientation can be thus produced. Moreover, our results indicate that employing the appropriate crystallization conditions extended-chain crystals can be formed in confinement. The results presented here demonstrate the simple fabrication and crystal engineering of ordered arrays of PFO nanowires; a system with potential applications in devices where anisotropic optical properties are required, such as polarized electroluminescence, waveguiding, optical switching, lasing, etc.
We propose a simple linear scaling expression in reciprocal space for evaluating the ion--electron potential of crystalline solids. The expression replaces the long-range ion--electron potential with an equivalent localized charge distribution and co rresponding boundary conditions on the unit cell. Given that no quadratic scaling structure factor is required---as used in traditional methods---the expression shows inherent linear behavior, and is well suited to simulating large-scale systems within orbital-free density functional theory. The scheme is implemented in the ATLAS software package and benchmarked by using a solid Mg bcc lattice containing tens of thousands of atoms in the unit cell. The test results show that the method can efficiently model large crystals with high computational accuracy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا