ﻻ يوجد ملخص باللغة العربية
We study the heavy quark spin (HQS) multiplet structure of P-wave $Qbar{Q}qqq$-type pentaquarks treated as molecules of a heavy meson and a heavy baryon. We define the light-cloud spin (LCS) basis decomposing the meson-baryon spin wavefunction into the LCS and HQS parts. Introducing the LCS basis, we find HQS multiplets classified by the LCS; five HQS singlets, two HQS doublets, and three HQS triplets. We construct the one-pion exchange potential respecting the heavy quark spin and chiral symmetries to demonstrate which HQS multiplets are realized as a bound state. By solving the coupled channel Schrodinger equations, we study the heavy meson-baryon systems with $I=1/2$ and $J^P=(1/2^+, 3/2^+, 5/2^+, 7/2^+)$. The bound states which have same LCS structure are degenerate at the heavy quark limit, and the degeneracy is resolved for finite mass. This HQS multiplet structure will be measured in the future experiments.
Very recently, the LHCb collaboration has reported the new result about the hidden-charm pentaquarks: $P_c(4312)$ near the $bar{D}Sigma_c$ threshold, and $P_c(4440)$ and $P_c(4457)$ near $bar{D}^*Sigma_c$ threshold. We study the heavy quark spin (HQS
We propose to describe the heavy and exotic tetraquark state as a holographic molecule by binding the lightest heavy-light meson $(0^-, 1^-)$ multiplet to a flavored sphaleron in the bulk of the Witten-Sakai-Sugimoto model. The strongly bound tetraqu
A narrow pentaquark state, $P_c(4312)^+$, decaying to $J/psi p$ is discovered with a statistical significance of $7.3sigma$ in a data sample of ${Lambda_b^0to J/psi p K^-}$ decays which is an order of magnitude larger than that previously analyzed by
Recently observed spectrum of $P_c$ states exhibits a strong link to $Sigma_c bar{D}^{(*)}$ thresholds. In spite of successful molecular interpretations, we still push forward to wonder whether there exist finer structures. Utilizing the effecitve la
We investigate the observed pentaquark candidates $P_c(4312)$, $P_c(4440)$ and $P_c(4457)$ from the latest LHCb measurement, as well as four possible spin partners in the $bar{D}^{(*)}Sigma_c^*$ system predicted from the heavy quark spin symmetry wit