ترغب بنشر مسار تعليمي؟ اضغط هنا

Volatility Models Applied to Geophysics and High Frequency Financial Market Data

72   0   0.0 ( 0 )
 نشر من قبل Md Al Masum Bhuiyan
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

This work is devoted to the study of modeling geophysical and financial time series. A class of volatility models with time-varying parameters is presented to forecast the volatility of time series in a stationary environment. The modeling of stationary time series with consistent properties facilitates prediction with much certainty. Using the GARCH and stochastic volatility model, we forecast one-step-ahead suggested volatility with +/- 2 standard prediction errors, which is enacted via Maximum Likelihood Estimation. We compare the stochastic volatility model relying on the filtering technique as used in the conditional volatility with the GARCH model. We conclude that the stochastic volatility is a better forecasting tool than GARCH (1, 1), since it is less conditioned by autoregressive past information.



قيم البحث

اقرأ أيضاً

77 - Dohyun Chun , Donggyu Kim 2021
Recently, to account for low-frequency market dynamics, several volatility models, employing high-frequency financial data, have been developed. However, in financial markets, we often observe that financial volatility processes depend on economic st ates, so they have a state heterogeneous structure. In this paper, to study state heterogeneous market dynamics based on high-frequency data, we introduce a novel volatility model based on a continuous Ito diffusion process whose intraday instantaneous volatility process evolves depending on the exogenous state variable, as well as its integrated volatility. We call it the state heterogeneous GARCH-Ito (SG-Ito) model. We suggest a quasi-likelihood estimation procedure with the realized volatility proxy and establish its asymptotic behaviors. Moreover, to test the low-frequency state heterogeneity, we develop a Wald test-type hypothesis testing procedure. The results of empirical studies suggest the existence of leverage, investor attention, market illiquidity, stock market comovement, and post-holiday effect in S&P 500 index volatility.
We perform a scaling analysis on NYSE daily returns. We show that volatility correlations are power-laws on a time range from one day to one year and, more important, that they exhibit a multiscale behaviour.
133 - Donggyu Kim , Seunghyeon Yu 2021
When applying Value at Risk (VaR) procedures to specific positions or portfolios, we often focus on developing procedures only for the specific assets in the portfolio. However, since this small portfolio risk analysis ignores information from assets outside the target portfolio, there may be significant information loss. In this paper, we develop a dynamic process to incorporate the ignored information. We also study how to overcome the curse of dimensionality and discuss where and when benefits occur from a large number of assets, which is called the blessing of dimensionality. We find empirical support for the proposed method.
Given a stationary point process, an intensity burst is defined as a short time period during which the number of counts is larger than the typical count rate. It might signal a local non-stationarity or the presence of an external perturbation to th e system. In this paper we propose a novel procedure for the detection of intensity bursts within the Hawkes process framework. By using a model selection scheme we show that our procedure can be used to detect intensity bursts when both their occurrence time and their total number is unknown. Moreover, the initial time of the burst can be determined with a precision given by the typical inter-event time. We apply our methodology to the mid-price change in FX markets showing that these bursts are frequent and that only a relatively small fraction is associated to news arrival. We show lead-lag relations in intensity burst occurrence across different FX rates and we discuss their relation with price jumps.
Various parametric models have been developed to predict large volatility matrices, based on the approximate factor model structure. They mainly focus on the dynamics of the factor volatility with some finite high-order moment assumptions. However, t he empirical studies have shown that the idiosyncratic volatility also has a dynamic structure and it comprises a large proportion of the total volatility. Furthermore, we often observe that the financial market exhibits heavy tails. To account for these stylized features in financial returns, we introduce a novel It^{o} diffusion process for both factor and idiosyncratic volatilities whose eigenvalues follow the vector auto-regressive (VAR) model. We call it the factor and idiosyncratic VAR-It^{o} (FIVAR-It^o) model. To handle the heavy-tailedness and curse of dimensionality, we propose a robust parameter estimation method for a high-dimensional VAR model. We apply the robust estimator to predicting large volatility matrices and investigate its asymptotic properties. Simulation studies are conducted to validate the finite sample performance of the proposed estimation and prediction methods. Using high-frequency trading data, we apply the proposed method to large volatility matrix prediction and minimum variance portfolio allocation and showcase the new model and the proposed method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا