ﻻ يوجد ملخص باللغة العربية
A well known result due to Carlson affirms that a power series with finite and positive radius of convergence R has no Ostrowski gaps if and only if the sequence of zeros of its nth sections is asymptotically equidistributed to {|z|=R}. Here we extend this characterization to those power series with null radius of convergence, modulo some necessary normalizations of the sequence of the sections of f.
Given a regular compact set $E$ in the complex plane, a unit measure $mu$ supported by $partial E,$ a triangular point set $beta := {{beta_{n,k}}_{k=1}^n}_{n=1}^{infty},betasubset partial E$ and a function $f$, holomorphic on $E$, let $pi_{n,m}^{beta
An abstract theory of Fourier series in locally convex topological vector spaces is developed. An analog of Fej{e}rs theorem is proved for these series. The theory is applied to distributional solutions of Cauchy-Riemann equations to recover basic re
Let $mathscr{X}$ be the set of positive real sequences $x=(x_n)$ such that the series $sum_n x_n$ is divergent. For each $x in mathscr{X}$, let $mathcal{I}_x$ be the collection of all $Asubseteq mathbf{N}$ such that the subseries $sum_{n in A}x_n$ is
Let $phi$ be a normalized convex function defined on open unit disk $mathbb{D}$. For a unified class of normalized analytic functions which satisfy the second order differential subordination $f(z)+ alpha z f(z) prec phi(z)$ for all $zin mathbb{D}$,
In this paper we shall use the boundary Schwarz lemma of Osserman to obtain some generalizations and refinements of some well known results concerning the maximum modulus of the polynomials with restricted zeros due to Turan, Dubinin and others.