ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal Reduction of Public Debt under Partial Observation of the Economic Growth

73   0   0.0 ( 0 )
 نشر من قبل Giorgia Callegaro
 تاريخ النشر 2019
  مجال البحث اقتصاد
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a government that aims at reducing the debt-to-gross domestic product (GDP) ratio of a country. The government observes the level of the debt-to-GDP ratio and an indicator of the state of the economy, but does not directly observe the development of the underlying macroeconomic conditions. The governments criterion is to minimize the sum of the total expected costs of holding debt and of debts reduction policies. We model this problem as a singular stochastic control problem under partial observation. The contribution of the paper is twofold. Firstly, we provide a general formulation of the model in which the level of debt-to-GDP ratio and the value of the macroeconomic indicator evolve as a diffusion and a jump-diffusion, respectively, with coefficients depending on the regimes of the economy. These are described through a finite-state continuous-time Markov chain. We reduce via filtering techniques the original problem to an equivalent one with full information (the so-called separated problem), and we provide a general verification result in terms of a related optimal stopping problem under full information. Secondly, we specialize to a case study in which the economy faces only two regimes, and the macroeconomic indicator has a suitable diffusive dynamics. In this setting we provide the optimal debt reduction policy. This is given in terms of the continuous free boundary arising in an auxiliary fully two-dimensional optimal stopping problem.



قيم البحث

اقرأ أيضاً

AI and reinforcement learning (RL) have improved many areas, but are not yet widely adopted in economic policy design, mechanism design, or economics at large. At the same time, current economic methodology is limited by a lack of counterfactual data , simplistic behavioral models, and limited opportunities to experiment with policies and evaluate behavioral responses. Here we show that machine-learning-based economic simulation is a powerful policy and mechanism design framework to overcome these limitations. The AI Economist is a two-level, deep RL framework that trains both agents and a social planner who co-adapt, providing a tractable solution to the highly unstable and novel two-level RL challenge. From a simple specification of an economy, we learn rational agent behaviors that adapt to learned planner policies and vice versa. We demonstrate the efficacy of the AI Economist on the problem of optimal taxation. In simple one-step economies, the AI Economist recovers the optimal tax policy of economic theory. In complex, dynamic economies, the AI Economist substantially improves both utilitarian social welfare and the trade-off between equality and productivity over baselines. It does so despite emergent tax-gaming strategies, while accounting for agent interactions and behavioral change more accurately than economic theory. These results demonstrate for the first time that two-level, deep RL can be used for understanding and as a complement to theory for economic design, unlocking a new computational learning-based approach to understanding economic policy.
This paper investigates the impact of economic policy uncertainty (EPU) on the crash risk of US stock market during the COVID-19 pandemic. To this end, we use the GARCH-S (GARCH with skewness) model to estimate daily skewness as a proxy for the stock market crash risk. The empirical results show the significantly negative correlation between EPU and stock market crash risk, indicating the aggravation of EPU increase the crash risk. Moreover, the negative correlation gets stronger after the global COVID-19 outbreak, which shows the crash risk of the US stock market will be more affected by EPU during the pandemic.
We develop a mathematical framework to study the economic impact of infectious diseases by integrating epidemiological dynamics with a kinetic model of wealth exchange. The multi-agent description leads to study the evolution over time of a system of kinetic equations for the wealth densities of susceptible, infectious and recovered individuals, whose proportions are driven by a classical compartmental model in epidemiology. Explicit calculations show that the spread of the disease seriously affects the distribution of wealth, which, unlike the situation in the absence of epidemics, can converge towards a stationary state with a bimodal form. Furthermore, simulations confirm the ability of the model to describe different phenomena characteristics of economic trends in situations compromised by the rapid spread of an epidemic, such as the unequal impact on the various wealth classes and the risk of a shrinking middle class.
In this paper we propose a new methodology to represent the results of the robust ordinal regression approach by means of a family of representative value functions for which, taken two alternatives $a$ and $b$, the following two conditions are satis fied: 1) if for all compatible value functions $a$ is evaluated not worse than $b$ and for at least one value function $a$ has a better evaluation, then the evaluation of $a$ is greater than the evaluation of $b$ for all representative value functions; 2) if there exists one compatible value function giving $a$ an evaluation greater than $b$ and another compatible value function giving $a$ an evaluation smaller than $b$, then there are also at least one representative function giving a better evaluation to $a$ and another representative value function giving $a$ an evaluation smaller than $b$. This family of representative value functions intends to provide the Decision Maker (DM) a more clear idea of the preferences obtained by the compatible value functions, with the aim to support the discussion in constructive approach of Multiple Criteria Decision Aiding.
We consider the problem of finding Pareto-optimal allocations of risk among finitely many agents. The associated individual risk measures are law invariant, but with respect to agent-dependent and potentially heterogeneous reference probability measu res. Moreover, individual risk assessments are assumed to be consistent with the respective second-order stochastic dominance relations. We do not assume their convexity though. A simple sufficient condition for the existence of Pareto optima is provided. Its proof combines local comonotone improvement with a Dieudonne-type argument, which also establishes a link of the optimal allocation problem to the realm of collapse to the mean results. Finally, we extend the results to capital requirements with multidimensional security markets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا