ترغب بنشر مسار تعليمي؟ اضغط هنا

Recovery of Structured Signals From Corrupted Non-Linear Measurements

313   0   0.0 ( 0 )
 نشر من قبل Yulong Liu
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper studies the problem of recovering a structured signal from a relatively small number of corrupted non-linear measurements. Assuming that signal and corruption are contained in some structure-promoted set, we suggest an extended Lasso to disentangle signal and corruption. We also provide conditions under which this recovery procedure can successfully reconstruct both signal and corruption.



قيم البحث

اقرأ أيضاً

111 - Jinchi Chen , Yulong Liu 2017
This paper studies the problem of accurately recovering a structured signal from a small number of corrupted sub-Gaussian measurements. We consider three different procedures to reconstruct signal and corruption when different kinds of prior knowledg e are available. In each case, we provide conditions (in terms of the number of measurements) for stable signal recovery from structured corruption with added unstructured noise. Our results theoretically demonstrate how to choose the regularization parameters in both partially and fully penalized recovery procedures and shed some light on the relationships among the three procedures. The key ingredient in our analysis is an extended matrix deviation inequality for isotropic sub-Gaussian matrices, which implies a tight lower bound for the restricted singular value of the extended sensing matrix. Numerical experiments are presented to verify our theoretical results.
250 - Zhongxing Sun , Wei Cui , 2021
This paper is concerned with the problem of recovering a structured signal from a relatively small number of corrupted random measurements. Sharp phase transitions have been numerically observed in practice when different convex programming procedure s are used to solve this problem. This paper is devoted to presenting theoretical explanations for these phenomenons by employing some basic tools from Gaussian process theory. Specifically, we identify the precise locations of the phase transitions for both constrained and penalized recovery procedures. Our theoretical results show that these phase transitions are determined by some geometric measures of structure, e.g., the spherical Gaussian width of a tangent cone and the Gaussian (squared) distance to a scaled subdifferential. By utilizing the established phase transition theory, we further investigate the relationship between these two kinds of recovery procedures, which also reveals an optimal strategy (in the sense of Lagrange theory) for choosing the tradeoff parameter in the penalized recovery procedure. Numerical experiments are provided to verify our theoretical results.
157 - Elad Romanov , Matan Gavish 2017
In matrix recovery from random linear measurements, one is interested in recovering an unknown $M$-by-$N$ matrix $X_0$ from $n<MN$ measurements $y_i=Tr(A_i^T X_0)$ where each $A_i$ is an $M$-by-$N$ measurement matrix with i.i.d random entries, $i=1,l dots,n$. We present a novel matrix recovery algorithm, based on approximate message passing, which iteratively applies an optimal singular value shrinker -- a nonconvex nonlinearity tailored specifically for matrix estimation. Our algorithm typically converges exponentially fast, offering a significant speedup over previously suggested matrix recovery algorithms, such as iterative solvers for Nuclear Norm Minimization (NNM). It is well known that there is a recovery tradeoff between the information content of the object $X_0$ to be recovered (specifically, its matrix rank $r$) and the number of linear measurements $n$ from which recovery is to be attempted. The precise tradeoff between $r$ and $n$, beyond which recovery by a given algorithm becomes possible, traces the so-called phase transition curve of that algorithm in the $(r,n)$ plane. The phase transition curve of our algorithm is noticeably better than that of NNM. Interestingly, it is close to the information-theoretic lower bound for the minimal number of measurements needed for matrix recovery, making it not only state-of-the-art in terms of convergence rate, but also near-optimal in terms of the matrices it successfully recovers.
127 - Xu Zhang , Wei Cui , 2017
This paper considers the problem of recovering a structured signal from a relatively small number of noisy measurements with the aid of a similar signal which is known beforehand. We propose a new approach to integrate prior information into the stan dard recovery procedure by maximizing the correlation between the prior knowledge and the desired signal. We then establish performance guarantees (in terms of the number of measurements) for the proposed method under sub-Gaussian measurements. Specific structured signals including sparse vectors, block-sparse vectors, and low-rank matrices are also analyzed. Furthermore, we present an interesting geometrical interpretation for the proposed procedure. Our results demonstrate that if prior information is good enough, then the proposed approach can (remarkably) outperform the standard recovery procedure. Simulations are provided to verify our results.
77 - Xiao Lv , Wei Cui , Yulong Liu 2021
In this paper, we characterize data-time tradeoffs of the proximal-gradient homotopy method used for solving penalized linear inverse problems under sub-Gaussian measurements. Our results are sharp up to an absolute constant factor. We also show that , in the absence of the strong convexity assumption, the proximal-gradient homotopy update can achieve a linear rate of convergence when the number of measurements is sufficiently large. Numerical simulations are provided to verify our theoretical results. All proofs are included in the online full version of this paper.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا