ترغب بنشر مسار تعليمي؟ اضغط هنا

Heralded Generation and Detection of Entangled Microwave--Optical Photon Pairs

231   0   0.0 ( 0 )
 نشر من قبل Changchun Zhong
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum state transfer between microwave and optical frequencies is essential for connecting superconducting quantum circuits to coherent optical systems and extending microwave quantum networks over long distances. To build such a hybrid `quantum Internet, an important experiment in the quantum regime is to entangle microwave and optical modes. Based on the model of a generic cavity electro-optomechanical system, we present a heralded scheme to generate entangled microwave--optical photon pairs, which can bypass the efficiency threshold for quantum channel capacity in direct transfer protocols. The parameter regime for entanglement verification is identified that is compatible with realistic experimental settings. Our scheme is feasible given the latest experimental progress on electro-optomechanics, and can be potentially generalized to various physical systems.

قيم البحث

اقرأ أيضاً

Photonic time-frequency entanglement is a promising resource for quantum information processing technologies. We investigate swapping of continuous-variable entanglement in the time-frequency degree of freedom using three-wave mixing in the low-gain regime with the aim of producing heralded biphoton states with high purity and low multi-pair probability. Heralding is achieved by combining one photon from each of two biphoton sources via sum-frequency generation to create a herald photon. We present a realistic model with pulsed pumps, investigate the effects of resolving the frequency of the herald photon, and find that frequency-resolving measurement of the herald photon is necessary to produce high-purity biphotons. We also find a trade-off between the rate of successful entanglement swapping and both the purity and quantified entanglement resource (negativity) of the heralded biphoton state.
Quantum blockade and entanglement play important roles in quantum information and quantum communication as quantum blockade is an effective mechanism to generate single photons (phonons) and entanglement is a crucial resource for quantum information processing. In this work, we propose a method to generate single entangled photon-phonon pairs in a hybrid optomechanical system. We show that photon blockade, phonon blockade, and photon-phonon correlation and entanglement can be observed via the atom-photon-phonon (tripartite) interaction, under the resonant atomic driving. The correlated and entangled single photons and single phonons, i.e., single entangled photon-phonon pairs, can be generated in both the weak and strong tripartite interaction regimes. Our results may have important applications in the development of highly complex quantum networks.
We demonstrate experimentally that spontaneous parametric down-conversion in an AlGaAs semiconductor Bragg reflection waveguide can make for paired photons highly entangled in the polarization degree of freedom at the telecommunication wavelength of 1550 nm. The pairs of photons show visibility higher than 90% in several polarization bases and violate a Clauser-Horne-Shimony-Holt Bell-like inequality by more than 3 standard deviations. This represents a significant step toward the realization of efficient and versatile self pumped sources of entangled photon pairs on-chip.
Multiplexed quantum memories capable of storing and processing entangled photons are essential for the development of quantum networks. In this context, we demonstrate the simultaneous storage and retrieval of two entangled photons inside a solid-sta te quantum memory and measure a temporal multimode capacity of ten modes. This is achieved by producing two polarization entangled pairs from parametric down conversion and mapping one photon of each pair onto a rare-earth-ion doped (REID) crystal using the atomic frequency comb (AFC) protocol. We develop a concept of indirect entanglement witnesses, which can be used as Schmidt number witness, and we use it to experimentally certify the presence of more than one entangled pair retrieved from the quantum memory. Our work puts forward REID-AFC as a platform compatible with temporal multiplexing of several entangled photon pairs along with a new entanglement certification method useful for the characterisation of multiplexed quantum memories.
Beyond the use of genuine monolithic integrated optical platforms, we report here a hybrid strategy enabling on-chip generation of configurable heralded two-photon states. More specifically, we combine two different fabrication techniques, textit{i.e .}, non-linear waveguides on lithium niobate for efficient photon-pair generation and femtosecond-laser-direct-written waveguides on glass for photon manipulation. Through real-time device manipulation capabilities, a variety of path-coded heralded two-photon states can be produced, ranging from product to entangled states. Those states are engineered with high levels of purity, assessed by fidelities of 99.5$pm$8% and 95.0$pm$8%, respectively, obtained via quantum interferometric measurements. Our strategy therefore stands as a milestone for further exploiting entanglement-based protocols, relying on engineered quantum states, and enabled by scalable and compatible photonic circuits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا