ترغب بنشر مسار تعليمي؟ اضغط هنا

Broadband space-time wave packets propagating 70 m

72   0   0.0 ( 0 )
 نشر من قبل Murat Yessenov
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The propagation distance of a pulsed beam in free space is ultimately limited by diffraction and space-time coupling. Space-time (ST) wave packets are pulsed beams endowed with tight spatio-temporal spectral correlations that render them propagation-invariant. Here we explore the limits of the propagation distance for ST wave packets. Making use of a specially designed phase plate inscribed by gray-scale lithography, we synthesize an ST light sheet of width $approx700$~$mu$m and bandwidth $sim20$~nm and confirm a propagation distance of $approx70$~m.



قيم البحث

اقرأ أيضاً

139 - Hao He , Cheng Guo , Meng Xiao 2021
Space-time wave packets can propagate invariantly in free space with arbitrary group velocity thanks to the spatio-temporal correlation. Here it is proved that the space-time wave packets are stable in dispersive media as well and free from the sprea d in time caused by material dispersion. Furthermore, the law of anomalous refraction for space-time wave packets is generalized to the weakly dispersive situation. These results reveal new potential of space-time wave packets for the applications in real dispersive media.
All known realizations of optical wave packets that accelerate along their propagation axis, such as Airy wave packets in dispersive media or wave-front-modulated X-waves, exhibit a constant acceleration; that is, the group velocity varies linearly w ith propagation. Here we synthesize space-time wave packets that travel in free space with arbitrary axial acceleration profiles, including group velocities that change with integer or fractional exponents of the distance. Furthermore, we realize a composite acceleration profile: the wave packet first accelerates from an initial to a terminal group velocity, decelerates back to the initial value, and then travels at a fixed group velocity. These never-before-seen optical-acceleration phenomena are all produced using the same experimental arrangement that precisely sculpts the wave packets spatio-temporal spectral structure.
Although diffractive spreading is an unavoidable feature of all wave phenomena, certain waveforms can attain propagation-invariance. A lesser-explored strategy for achieving optical selfsimilar propagation exploits the modification of the spatio-temp oral field structure when observed in reference frames moving at relativistic speeds. For such an observer, it is predicted that the associated Lorentz boost can bring to a halt the axial dynamics of a wave packet of arbitrary profile. This phenomenon is particularly striking in the case of a self-accelerating beam -- such as an Airy beam -- whose peak normally undergoes a transverse displacement upon free-propagation. Here we synthesize an acceleration-free Airy wave packet that travels in a straight line by deforming its spatio-temporal spectrum to reproduce the impact of a Lorentz boost. The roles of the axial spatial coordinate and time are swapped, leading to `time-diffraction manifested in self-acceleration observed in the propagating Airy wave-packet frame.
Refraction at the interface between two materials is fundamental to the interaction of light with photonic devices and to the propagation of light through the atmosphere at large. Underpinning the traditional rules for the refraction of an optical fi eld is the tacit presumption of the separability of its spatial and temporal degrees-of-freedom. We show here that endowing a pulsed beam with precise spatio-temporal spectral correlations unveils remarkable refractory phenomena, such as group-velocity invariance with respect to the refractive index, group-delay cancellation, anomalous group-velocity increase in higher-index materials, and tunable group velocity by varying the angle of incidence. A law of refraction for `space-time wave packets encompassing these effects is verified experimentally in a variety of optical materials. Space-time refraction defies our expectations derived from Fermats principle and offers new opportunities for molding the flow of light and other wave phenomena.
An optical buffer having a large delay-bandwidth-product -- a critical component for future all-optical communications networks -- remains elusive. Central to its realization is a controllable inline optical delay line, previously accomplished via en gineered dispersion in optical materials or photonic structures constrained by a low delay-bandwidth product. Here we show that space-time wave packets whose group velocity in free space is continuously tunable provide a versatile platform for constructing inline optical delay lines. By spatio-temporal spectral-phase-modulation, wave packets in the same or in different spectral windows that initially overlap in space and time subsequently separate by multiple pulse widths upon free propagation by virtue of their different group velocities. Delay-bandwidth products of ~100 for pulses of width ~1 ps are observed, with no fundamental limit on the system bandwidth.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا