ﻻ يوجد ملخص باللغة العربية
Map-centric SLAM is emerging as an alternative of conventional graph-based SLAM for its accuracy and efficiency in long-term mapping problems. However, in map-centric SLAM, the process of loop closure differs from that of conventional SLAM and the result of incorrect loop closure is more destructive and is not reversible. In this paper, we present a tightly coupled photogeometric metric localization for the loop closure problem in map-centric SLAM. In particular, our method combines complementary constraints from LiDAR and camera sensors, and validates loop closure candidates with sequential observations. The proposed method provides a visual evidence-based outlier rejection where failures caused by either place recognition or localization outliers can be effectively removed. We demonstrate the proposed method is not only more accurate than the conventional global ICP methods but is also robust to incorrect initial pose guesses.
Map-centric SLAM utilizes elasticity as a means of loop closure. This approach reduces the cost of loop closure while still provides large-scale fusion-based dense maps, when compared to the trajectory-centric SLAM approaches. In this paper, we prese
Localization, or position fixing, is an important problem in robotics research. In this paper, we propose a novel approach for long-term localization in a changing environment using 3D LiDAR. We first create the map of a real environment using GPS an
Map based visual inertial localization is a crucial step to reduce the drift in state estimation of mobile robots. The underlying problem for localization is to estimate the pose from a set of 3D-2D feature correspondences, of which the main challeng
Loop closure detection is an essential component of Simultaneous Localization and Mapping (SLAM) systems, which reduces the drift accumulated over time. Over the years, several deep learning approaches have been proposed to address this task, however
The growing popularity of autonomous systems creates a need for reliable and efficient metric pose retrieval algorithms. Currently used approaches tend to rely on nearest neighbor search of binary descriptors to perform the 2D-3D matching and guarant