ﻻ يوجد ملخص باللغة العربية
We explore signals of new physics with two Higgs bosons and large missing transverse energy at the LHC. Such a signature is characteristic of models for dark matter or other secluded particles that couple to the standard model through an extended scalar sector. Our goal is to provide search strategies and an interpretation framework for this new signature that are applicable to a large class of models. To this end, we define simplified models of hidden sectors leading to two different event topologies: symmetric decay, i.e., pair-produced mediators decaying each into a Higgs plus invisible final state; and di-Higgs resonance, i.e., resonant Higgs-pair production recoiling against a pair of invisible particles. For both scenarios, we optimize the discovery potential by performing a multi-variate analysis of final states with four bottom quarks and missing energy, employing state-of-the-art machine learning algorithms for signal-background discrimination. We determine the parameter space that the LHC can test in both scenarios, thus facilitating an interpretation of our results in terms of complete models. Di-Higgs production with missing energy is competitive with other missing energy searches and thus provides a new opportunity to find hidden particles at the LHC.
The non-observation of dark matter (DM) by direct detection experiments suggests that any new interaction of DM with the Standard Model (SM) should be very weak. One of the simplest scenarios to achieve this is a dark sector that is charged under a n
We consider the phenomenological implications of charged scalar extensions of the SM Higgs sector in addition to EFT couplings of this new state to SM matter. We perform a detailed investigation of modifications of loop-induced decays of the 125 GeV
We study vortex solutions in a theory with dynamics governed by two weakly coupled Abelian Higgs models, describing a hidden sector and a visible sector. We analyze the radial dependence of the axially symmetric solutions constructed numerically and
We consider search strategies for an extended Higgs sector at the high-luminosity LHC14 utilizing multi-top final states. In the framework of a Two Higgs Doublet Model, the purely top final states ($tbar t, , 4t$) are important channels for heavy Hig
LHC searches for non-standard Higgs bosons decaying into tau lepton pairs constitute a sensitive experimental probe for physics beyond the Standard Model (BSM), such as Supersymmetry (SUSY). Recently, the limits obtained from these searches have been