ﻻ يوجد ملخص باللغة العربية
We have adapted the algorithmic tools developed during the Kepler mission to vet the quality of transit-like signals for use on the K2 mission data. Using the four sets of publicly-available lightcurves on MAST, we produced a uniformly-vetted catalog of 772 transiting planet candidates from K2 as listed at the NASA Exoplanet archive in the K2 Table of Candidates. Our analysis marks 676 of these as planet candidates and 96 as false positives. All confirmed planets pass our vetting tests. 60 of our false positives are new identifications -- effectively doubling the overall number of astrophysical signals mimicking planetary transits in K2 data. Most of the targets listed as false positives in our catalog either show prominent secondary eclipses, transit depths suggesting a stellar companion instead of a planet, or significant photocenter shifts during transit. We packaged our tools into the open-source, automated vetting pipeline DAVE (Discovery and Vetting of Exoplanets) designed to streamline follow-up efforts by reducing the time and resources wasted observing targets that are likely false positives. DAVE will also be a valuable tool for analyzing planet candidates from NASAs TESS mission, where several guest-investigator programs will provide independent lightcurve sets -- and likely many more from the community. We are currently testing DAVE on recently-released TESS planet candidates and will present our results in a follow-up paper.
NASAs Transiting Exoplanet Survey Satellite (TESS) presents us with an unprecedented volume of space-based photometric observations that must be analyzed in an efficient and unbiased manner. With at least $sim1,000,000$ new light curves generated eve
The Kepler Mission was designed to identify and characterize transiting planets in the Kepler Field of View and to determine their occurrence rates. Emphasis was placed on identification of Earth-size planets orbiting in the Habitable Zone of their h
State of the art exoplanet transit surveys are producing ever increasing quantities of data. To make the best use of this resource, in detecting interesting planetary systems or in determining accurate planetary population statistics, requires new au
We present TRICERATOPS, a new Bayesian tool that can be used to vet and validate TESS Objects of Interest (TOIs). We test the tool on 68 TOIs that have been previously confirmed as planets or rejected as astrophysical false positives. By looking in t
This paper presents SAILFISH, a scalable system for automatically finding state-inconsistency bugs in smart contracts. To make the analysis tractable, we introduce a hybrid approach that includes (i) a light-weight exploration phase that dramatically