ﻻ يوجد ملخص باللغة العربية
Optimization of applications for supercomputers of the highest performance class requires parallelization at multiple levels using different techniques. In this contribution we focus on parallelization of particle physics simulations through vector instructions. With the advent of the Scalable Vector Extension (SVE) ISA, future ARM-based processors are expected to provide a significant level of parallelism at this level.
The SX-Aurora TSUBASA PCIe accelerator card is the newest model of NECs SX architecture family. Its multi-core vector processor features a vector length of 16 kbits and interfaces with up to 48 GB of HBM2 memory in the current models, available since
Recent advances in lattice field theory, in computer technology and in chiral perturbation theory have enabled lattice QCD to emerge as a powerful quantitative tool in understanding hadron structure. I describe recent progress in the computation of t
Our ability to resolve new physics effects is, largely, limited by the precision with which we calculate. The calculation of observables in the Standard (or a new physics) Model requires knowledge of associated hadronic contributions. The precision o
We sketch the basic ideas of the lattice regularization in Quantum Field Theory, the corresponding Monte Carlo simulations, and applications to Quantum Chromodynamics (QCD). This approach enables the numerical measurement of observables at the non-pe
Nucleon-nucleon (NN) potential is studied by lattice QCD simulations in the quenched approximation, using the plaquette gauge action and the Wilson quark action on a 32^4 (simeq (4.4 fm)^4) lattice. A NN potential V_{NN}(r) is defined from the equal-