ﻻ يوجد ملخص باللغة العربية
We consider the dynamical model of a binary bosonic gas trapped in a symmetric dual-core cigar-shaped potential. The setting is modeled by a system of linearly-coupled one-dimensional Gross-Pitaevskii equations with the cubic self-repulsive terms and quadratic attractive ones,which represent the Lee-Huang-Yang corrections to the mean-field theory in this geometry. The main subject is spontaneous symmetry breaking (SSB) of quantum droplets (QDs), followed by restoration of the symmetry, with respect to the symmetric parallel-coupled trapping cores, following the increase of the QDs total norm. The SSB transition and inverse symmetry-restoring one form a bifurcation loop, whose shape in concave at small values of the inter-core coupling constant, $kappa$, and convex at larger $kappa $. The loop does not exist above a critical value of $kappa $. At very large values of the norm, QDs do not break their symmetry, featuring a flat-top shape. Some results are obtained in an analytical form, including an exact front solution connecting constant zero and finite values of the wave function. Collisions between moving QDs are considered too, demonstrating a trend to merger into breathers.
We introduce a dual-core system with double symmetry, one between the cores, and one along each core, imposed by the spatial modulation of local nonlinearity in the form of two tightly localized spots, which may be approximated by a pair of ideal del
It was recently demonstrated that two-dimensional Townes solitons (TSs) in two-component systems with cubic self-focusing, which are normally made unstable by the critical collapse, can be stabilized by linear spin-orbit coupling (SOC), in Bose-Einst
We consider a binary bosonic condensate with weak mean-field (MF) residual repulsion, loaded in an array of nearly one-dimensional traps coupled by transverse hopping. With the MF force balanced by the effectively one-dimensional attraction, induced
Quantum adiabatic evolution, an important fundamental concept inphysics, describes the dynamical evolution arbitrarily close to the instantaneous eigenstate of a slowly driven Hamiltonian. In most systems undergoing spontaneous symmetry-breaking tran
The article produces a brief review of some recent results which predict stable propagation of solitons and solitary vortices in models based on the nonlinear Schroedinger equation including fractional one- or two-dimensional diffraction and cubic or