ﻻ يوجد ملخص باللغة العربية
Some problems in physics can be handled only after a suitable textit{ansatz }solution has been guessed. Such method is therefore resilient to generalization, resulting of limited scope. The coherent transport by adiabatic passage of a quantum state through an array of semiconductor quantum dots provides a par excellence example of such approach, where it is necessary to introduce its so called counter-intuitive control gate ansatz pulse sequence. Instead, deep reinforcement learning technique has proven to be able to solve very complex sequential decision-making problems involving competition between short-term and long-term rewards, despite a lack of prior knowledge. We show that in the above problem deep reinforcement learning discovers control sequences outperforming the textit{ansatz} counter-intuitive sequence. Even more interesting, it discovers novel strategies when realistic disturbances affect the ideal system, with better speed and fidelity when energy detuning between the ground states of quantum dots or dephasing are added to the master equation, also mitigating the effects of losses. This method enables online update of realistic systems as the policy convergence is boosted by exploiting the prior knowledge when available. Deep reinforcement learning proves effective to control dynamics of quantum states, and more generally it applies whenever an ansatz solution is unknown or insufficient to effectively treat the problem.
The architecture of circuital quantum computers requires computing layers devoted to compiling high-level quantum algorithms into lower-level circuits of quantum gates. The general problem of quantum compiling is to approximate any unitary transforma
Finding the ground state of a quantum mechanical system can be formulated as an optimal control problem. In this formulation, the drift of the optimally controlled process is chosen to match the distribution of paths in the Feynman--Kac (FK) represen
Combining reinforcement learning (RL) and molecular dynamics (MD) simulations, we propose a machine-learning approach (RL$^ddag$) to automatically unravel chemical reaction mechanisms. In RL$^ddag$, locating the transition state of a chemical reactio
We consider the optimal approximation of certain quantum states of a harmonic oscillator with the superposition of a finite number of coherent states in phase space placed either on an ellipse or on a certain lattice. These scenarios are currently ex
Recent advances in quantum computing have drawn considerable attention to building realistic application for and using quantum computers. However, designing a suitable quantum circuit architecture requires expert knowledge. For example, it is non-tri