ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiscale and multimodal network dynamics underpinning working memory

82   0   0.0 ( 0 )
 نشر من قبل Andrew Murphy
 تاريخ النشر 2019
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Working memory (WM) allows information to be stored and manipulated over short time scales. Performance on WM tasks is thought to be supported by the frontoparietal system (FPS), the default mode system (DMS), and interactions between them. Yet little is known about how these systems and their interactions relate to individual differences in WM performance. We address this gap in knowledge using functional MRI data acquired during the performance of a 2-back WM task, as well as diffusion tensor imaging data collected in the same individuals. We show that the strength of functional interactions between the FPS and DMS during task engagement is inversely correlated with WM performance, and that this strength is modulated by the activation of FPS regions but not DMS regions. Next, we use a clustering algorithm to identify two distinct subnetworks of the FPS, and find that these subnetworks display distinguishable patterns of gene expression. Activity in one subnetwork is positively associated with the strength of FPS-DMS functional interactions, while activity in the second subnetwork is negatively associated. Further, the pattern of structural linkages of these subnetworks explains their differential capacity to influence the strength of FPS-DMS functional interactions. To determine whether these observations could provide a mechanistic account of large-scale neural underpinnings of WM, we build a computational model of the system composed of coupled oscillators. Modulating the amplitude of the subnetworks in the model causes the expected change in the strength of FPS-DMS functional interactions, thereby offering support for a mechanism in which subnetwork activity tunes functional interactions. Broadly, our study presents a holistic account of how regional activity, functional interactions, and structural linkages together support individual differences in WM in humans.



قيم البحث

اقرأ أيضاً

When one is presented with an item or a face, one can sometimes have a sense of recognition without being able to recall where or when one has encountered it before. This sense of recognition is known as familiarity. Following previous computational models of familiarity memory we investigate the dynamical properties of familiarity discrimination, and contrast two different familiarity discriminators: one based on the energy of the neural network, and the other based on the time derivative of the energy. We show how the familiarity signal decays after a stimulus is presented, and examine the robustness of the familiarity discriminator in the presence of random fluctuations in neural activity. For both discriminators we establish, via a combined method of signal-to-noise ratio and mean field analysis, how the maximum number of successfully discriminated stimuli depends on the noise level.
We propose a single chunk model of long-term memory that combines the basic features of the ACT-R theory and the multiple trace memory architecture. The pivot point of the developed theory is a mathematical description of the creation of new memory t races caused by learning a certain fragment of information pattern and affected by the fragments of this pattern already retained by the current moment of time. Using the available psychological and physiological data these constructions are justified. The final equation governing the learning and forgetting processes is constructed in the form of the differential equation with the Caputo type fractional time derivative. Several characteristic situations of the learning (continuous and discontinuous) and forgetting processes are studied numerically. In particular, it is demonstrated that, first, the learning and forgetting exponents of the corresponding power laws of the memory fractional dynamics should be regarded as independent system parameters. Second, as far as the spacing effects are concerned, the longer the discontinuous learning process, the longer the time interval within which a subject remembers the information without its considerable lost. Besides, the latter relationship is a linear proportionality.
Neurofeedback cognitive training is a promising tool used to promote cognitive functions effectively and efficiently. In this study, we investigated a novel functional near-infrared spectroscopy (fNIRS)-based frontoparietal functional connectivity (F C) neurofeedback training paradigm related to working memory, involving healthy adults. Compared with conventional cognitive training studies, we chose the frontoparietal network, a key brain region for cognitive function modulation, as neurofeedback, yielding a strong targeting effect. In the experiment, 10 participants (test group) received three cognitive training sessions of 15 min using fNIRS-based frontoparietal FC as neurofeedback, and another 10 participants served as the control group. Frontoparietal FC was significantly increased in the test group (p D 0.03), and the cognitive functions (memory and attention) were significantly promoted compared with the control group (accuracy of 3-back test: p D 0.0005, reaction time of 3-back test: p D 0.0009). After additional validations on long-term training effect and on different patient populations, the proposed method exhibited considerable potential to be developed as a fast, effective, and widespread training approach for cognitive function enhancement.
A connectome is a map of the structural and/or functional connections in the brain. This information-rich representation has the potential to transform our understanding of the relationship between patterns in brain connectivity and neurological proc esses, disorders, and diseases. However, existing computational techniques used to analyze connectomes are often insufficient for interrogating multi-subject connectomics datasets. Several methods are either solely designed to analyze single connectomes, or leverage heuristic graph invariants that ignore the complete topology of connections between brain regions. To enable more rigorous comparative connectomics analysis, we introduce robust and interpretable statistical methods motivated by recent theoretical advances in random graph models. These methods enable simultaneous analysis of multiple connectomes across different scales of network topology, facilitating the discovery of hierarchical brain structures that vary in relation with phenotypic profiles. We validated these methods through extensive simulation studies, as well as synthetic and real-data experiments. Using a set of high-resolution connectomes obtained from genetically distinct mouse strains (including the BTBR mouse -- a standard model of autism -- and three behavioral wild-types), we show that these methods uncover valuable latent information in multi-subject connectomics data and yield novel insights into the connective correlates of neurological phenotypes.
Modeling the neuronal processes underlying short-term working memory remains the focus of many theoretical studies in neuroscience. Here we propose a mathematical model of spiking neuron network (SNN) demonstrating how a piece of information can be m aintained as a robust activity pattern for several seconds then completely disappear if no other stimuli come. Such short-term memory traces are preserved due to the activation of astrocytes accompanying the SNN. The astrocytes exhibit calcium transients at a time scale of seconds. These transients further modulate the efficiency of synaptic transmission and, hence, the firing rate of neighboring neurons at diverse timescales through gliotransmitter release. We show how such transients continuously encode frequencies of neuronal discharges and provide robust short-term storage of analogous information. This kind of short-term memory can keep operative information for seconds, then completely forget it to avoid overlapping with forthcoming patterns. The SNN is inter-connected with the astrocytic layer by local inter-cellular diffusive connections. The astrocytes are activated only when the neighboring neurons fire quite synchronously, e.g. when an information pattern is loaded. For illustration, we took greyscale photos of peoples faces where the grey level encoded the level of applied current stimulating the neurons. The astrocyte feedback modulates (facilitates) synaptic transmission by varying the frequency of neuronal firing. We show how arbitrary patterns can be loaded, then stored for a certain interval of time, and retrieved if the appropriate clue pattern is applied to the input.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا