ﻻ يوجد ملخص باللغة العربية
Using vanishing of graded components of local cohomology modules of the Rees algebra of the normal filtration of an ideal, we give bounds on the normal reduction number. This helps to get necessary and sufficient conditions in Cohen-Macaulay local rings of dimension $dgeq 3$, for the vanishing of the normal Hilbert coefficients $overline{e}_k(I)$ for $kleq d,$ in terms of the normal reduction number.
Let $G$ be a finite simple graph on $n$ vertices and $J_G$ denote the corresponding binomial edge ideal in the polynomial ring $S = K[x_1, ldots, x_n, y_1, ldots, y_n].$ In this article, we compute the Hilbert series of binomial edge ideal of decompo
In this paper, we investigate the behavior of almost reverse lexicographic ideals with the Hilbert function of a complete intersection. More precisely, over a field $K$, we give a new constructive proof of the existence of the almost revlex ideal $Js
The paper has two goals: the study the associated graded ring of contracted homogeneous ideals in $K[x,y]$ and the study of the Groebner fan of the ideal $P$ of the rational normal curve in ${bf P}^d$. These two problems are, quite surprisingly, very
We study the complete intersection property and the algebraic invariants (index of regularity, degree) of vanishing ideals on degenerate tori over finite fields. We establish a correspondence between vanishing ideals and toric ideals associated to nu
Let K be a finite field. Let X* be a subset of the affine space Kn, which is parameterized by odd cycles. In this paper we give an explicit Grobner basis for the vanishing ideal, I(X*), of X*. We give an explicit formula for the regularity of I(X*) a