ترغب بنشر مسار تعليمي؟ اضغط هنا

Ensemble transform algorithms for nonlinear smoothing problems

111   0   0.0 ( 0 )
 نشر من قبل Jana de Wiljes
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Several numerical tools designed to overcome the challenges of smoothing in a nonlinear and non-Gaussian setting are investigated for a class of particle smoothers. The considered family of smoothers is induced by the class of linear ensemble transform filters which contains classical filters such as the stochastic ensemble Kalman filter, the ensemble square root filter and the recently introduced nonlinear ensemble transform filter. Further the ensemble transform particle smoother is introduced and particularly highlighted as it is consistent in the particle limit and does not require assumptions with respect to the family of the posterior distribution. The linear update pattern of the considered class of linear ensemble transform smoothers allows one to implement important supplementary techniques such as adaptive spread corrections, hybrid formulations, and localization in order to facilitate their application to complex estimation problems. These additional features are derived and numerically investigated for a sequence of increasingly challenging test problems.



قيم البحث

اقرأ أيضاً

156 - Zhiyan Ding , Qin Li , Jianfeng Lu 2020
Ensemble Kalman Inversion (EnKI) and Ensemble Square Root Filter (EnSRF) are popular sampling methods for obtaining a target posterior distribution. They can be seem as one step (the analysis step) in the data assimilation method Ensemble Kalman Filt er. Despite their popularity, they are, however, not unbiased when the forward map is nonlinear. Important Sampling (IS), on the other hand, obtains the unbiased sampling at the expense of large variance of weights, leading to slow convergence of high moments. We propose WEnKI and WEnSRF, the weight
We investigate the application of ensemble transform approaches to Bayesian inference of logistic regression problems. Our approach relies on appropriate extensions of the popular ensemble Kalman filter and the feedback particle filter to the cross e ntropy loss function and is based on a well-established homotopy approach to Bayesian inference. The arising finite particle evolution equations as well as their mean-field limits are affine-invariant. Furthermore, the proposed methods can be implemented in a gradient-free manner in case of nonlinear logistic regression and the data can be randomly subsampled similar to mini-batching of stochastic gradient descent. We also propose a closely related SDE-based sampling method which again is affine-invariant and can easily be made gradient-free. Numerical examples demonstrate the appropriateness of the proposed methodologies.
We present a novel algorithm based on the ensemble Kalman filter to solve inverse problems involving multiscale elliptic partial differential equations. Our method is based on numerical homogenization and finite element discretization and allows to r ecover a highly oscillatory tensor from measurements of the multiscale solution in a computationally inexpensive manner. The properties of the approximate solution are analysed with respect to the multiscale and discretization parameters, and a convergence result is shown to hold. A reinterpretation of the solution from a Bayesian perspective is provided, and convergence of the approximate conditional posterior distribution is proved with respect to the Wasserstein distance. A numerical experiment validates our methodology, with a particular emphasis on modelling error and computational cost.
We use the well-known observation that the solutions of Jacobis differential equation can be represented via non-oscillatory phase and amplitude functions to develop a fast algorithm for computing multi-dimensional Jacobi polynomial transforms. More explicitly, it follows from this observation that the matrix corresponding to the discrete Jacobi transform is the Hadamard product of a numerically low-rank matrix and a multi-dimensional discrete Fourier transform (DFT) matrix. The application of the Hadamard product can be carried out via $O(1)$ fast Fourier transforms (FFTs), resulting in a nearly optimal algorithm to compute the multidimensional Jacobi polynomial transform.
In this paper, we study temporal splitting algorithms for multiscale problems. The exact fine-grid spatial problems typically require some reduction in degrees of freedom. Multiscale algorithms are designed to represent the fine-scale details on a co arse grid and, thus, reduce the problems size. When solving time-dependent problems, one can take advantage of the multiscale decomposition of the solution and perform temporal splitting by solving smaller-dimensional problems, which is studied in the paper. In the proposed approach, we consider the temporal splitting based on various low dimensional spatial approximations. Because a multiscale spatial splitting gives a good decomposition of the solution space, one can achieve an efficient implicit-explicit temporal discretization. We present a recently developed theoretical result in our earlier work and adopt it in this paper for multiscale problems. Numerical results are presented to demonstrate the efficiency of the proposed splitting algorithm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا